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Liquid crystals inevitably possess topological defect excitations generated through boundary con-
ditions, applied fields or in quenches to the ordered phase. In equilibrium pairs of defects coarsen
and annihilate as the uniform ground state is approached. Here we show that defects in active liquid
crystals exhibit profoundly different behavior, depending on the degree of activity and its contrac-
tile or extensile character. While contractile systems enhance the annihilation dynamics of passive
systems, extensile systems act to drive defects apart so that they swarm around in the manner of
topologically well-characterized self-propelled particles. We develop a simple analytical model for
the defect dynamics which reproduces the key features of both the numerical solutions and recent

experiments on microtubule-kinesin assemblies.

Active liquid crystals are nonequilibrium fluids com-
posed of internally driven elongated units. The key fea-
ture that distinguishes them from their well-studied pas-
sive counterparts is that they are maintained out of equi-
librium not by an external force applied at the system’s
boundary, such as an imposed shear, but by an energy in-
put on each individual unit. Examples include mixtures
of cytoskeletal filaments and associated motor proteins,
bacterial suspensions, the cell cytoskeleton and even non-
living analogues, such as monolayers of vibrated granular
rods [1]. The internal drive that characterizes active lig-
uid crystals dramatically changes the system’s dynamics
and yields novel effects arising from the interplay of ori-
entational order and flow, such as spontaneous laminar
flow [2-4], large density fluctuations [5-7], unusual rhe-
ological properties [8-10], excitability [11, 12] and low
Reynolds number turbulence [12, 13].

Ordered liquid crystalline phases of active matter, like
their equilibrium counterparts, exhibit distinctive inho-
mogeneous configurations known as topological defects.
In equilibrium, defect configurations may be generated
through boundary conditions, externally applied fields,
or via rapid quenches to the ordered state. When the
constraints are removed or the system is given time to
equilibrate, the defects ultimately annihilate [14]. Ex-
periments have shown that in active systems, in con-
trast, defect configurations can occur spontaneously in
bulk and be continuously regenerated by the local en-
ergy input [15, 16]. The nature of the topological defects
is of course intimately related to the symmetry of the
system, which can be either polar (like in ferromagnets)
or nematic. While the nature of the charge +1 defects
that occur in polar active systems has been studied for
some time [17-20], the properties of defects in apolar
or nematic active media are still largely unexplored. In
these systems the defects are charge +1/2 disclinations
[21]. Such defects have been identified in monolayers of
vibrated granular rods [7] and also in active nematic gels
assembled in wvitro from microtubules and kinesins. In
the latter case the defects were shown to drive sponta-

neous flows in bulk [16]. When confined at an oil/water
interface, furthermore, the gel forms a two-dimensional
active nematic film, with self-sustained flows resembling
cytoplasmic streaming and the continuous creation and
annihilation of defect pairs [16].

In this paper we examine the effect of activity on the
dynamics of disclinations in a two-dimensional nematic
liquid crystalline film [30]. Hydrodynamics plays an im-
portant role in controlling the dynamics of defects in lig-
uid crystals. As the defect moves, the coupling between
the orientational order parameter and the flow velocity of
the fluid yields what is usually called the backflow which
significantly modifies defect dynamics [22-26]. Here we
show that active stresses dramatically affect the defect
dynamics by altering the backflow in such a way as to
slow down, speed up or even suppress pair annihilation,
according to the extent of activity and the typical time
scale of orientational relaxation of the nematic phase.
Moreover, when the latter is very large compared to the
time scale associated with activity, relaxation is over-
whelmed entirely, leading to defect proliferation.

The hydrodynamic equations of active nematic liquid
crystals can be obtained from that of passive nematics by
the addition of nonequilibrium stresses and currents due
to activity [1, 11, 12]. These equations are formulated
in terms of a concentration ¢, a flow velocity v and the
nematic tensor order parameter Q;; = S (n,-nj - %Jij),
with n the director field. The alignment tensor @;; is
traceless and symmetric, and hence has only two inde-
pendent component in two dimensions. Considering for
simplicity the case of an incompressible fluid of constant
density p, where V - v = 0, the equations are given by
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FIG. 1: (color online) Snapshots of a disclination pair shortly
after the beginning of relaxation. (Top) Director field (black
lines) superimposed on a heat map of the nematic order pa-
rameter and (bottom) flow field (arrows) superimposed on a
heat map of the concentration for an extensile system with
o = —0.2 (a,c) and a contractile system with o = 0.2 (b,d).
In the top images the color denotes the magnitude of the
nematic order parameter S relative to its equilibrium value
So = /1 — ¢*/co. In the bottom images the color denotes the
magnitude of the concentration c relative to the average value
co. Depending on the sign of «, the backflow tends to speed
up (o > 0) or slow down (a < 0) the annihilation process
by increasing/decreasing the velocity of the +1/2 disclina-
tion. For a negative and sufficiently large in magnitude, the
+1/2 defect reverses its direction of motion (c) and escapes
annihilation.

where % = 0¢ + v - V indicates the material derivative,
D;; = Dgdi; + D1Q4; is the anisotropic diffusion ten-
sor, n the viscosity, p the pressure and A the nematic
alignment parameter. Here u;; = (0;v; + 0;v;)/2 and
wi; = (0yv; — 0;v;)/2 are the symmetrized rate of strain
tensor and the vorticity, respectively. The molecular field
H;; embodies the relaxational dynamics of the nematic
and can be obtained from the variation of the Landau-
De Gennes free energy of a two-dimensional nematic [21],

F/K = /dA [Le— ) tr Q@ + Le(tr Q) + 1VQP |
(2)

where K is an elastic constant with dimensions of en-
ergy, tr Q2 = S?/2 and ¢* is the critical concentration for
the isotropic-nematic transition, so that, at equilibrium,

S = /1 —c*/c. Finally, the stress tensor 0;; = 0}, + o}
is the sum of the elastic stress due to nematic elasticity,
O’;—rj = —ASHM + Qikaj - Hikaj, where for simplic-
ity we have neglected the Eriksen stress, and an active
contribution, o = 06202621']', which describes contrac-
tile/extensile stresses exerted by the active particles in
the direction of the director field. In addition, activity
yields a curvature-induced current j* = —a1c?V - Q in
Eq. (11) that drives units from regions populated by
fast moving particles to regions of slow moving particles.
The ¢? dependence of the active stress and current is
appropriate for systems where activity arises from pair
interactions among the filaments via crosslinking motor
proteins. The sign of as depends on whether the active
particles generate contractile or extensile stresses, with
as > 0 for the contractile case and as < 0 for extensile
systems, while we assume a3 > 0.

To study the dynamics of defects, we consider a pair
of opposite-sign half-integer disclinations separated by a
distance x = x4 — x_, where x4+ is the z-coordinate
of the +1/2 disclination respectively as shown in Fig.
la,b. When backflow is neglected the pair dynamics is
purely relaxational and is controlled by the balance of the
attractive force between defects Fpair = —V Epair, with
Epair ~ Klog z/a the energy of a defect pair (with a the
core radius), and an effective frictional force Fyi. = pa,
with u ~ « a friction coefficient. Thus ui = K/x and the
distance between the annihilating defects decreases ac-
cording to a square-root law, z(t) o< v/t, — t, with ¢, the
annihilation time. More precise calculations have shown
that the effective friction is itself a function of the defect
separation [27, 28], u = pologz/a, although this does
not imply substantial changes in the overall picture. This
simple model predicts that the defect and anti-defect ap-
proach each other along symmetric trajectories.

We have integrated numerically Eqgs. (1) for an ini-
tial configuration of uniform concentration and zero flow
velocity, with two disclinations of charge +1/2 located
on the x axis of a square L x L box at initial positions
x4 (0) = (£L/4,0). The integration is preformed using
the finite differences scheme described in Ref. [11, 12].
To render Eqgs. (1) dimensionless we normalize distance
by the approximate length of the active rods £ =1/ Ve,
stress by the elastic stress of the nematic phase 0 = K/~2
and time by 7 = n¢?/K representing the ratio between
viscous and elastic stress. In these dimensionless units
for simplicity we let as = « and take a; = |az|/2. Pe-
riodic boundary conditions are assumed and the defects
are allowed to evolve until they annihilate. Fig. 1 shows
a snapshot of the order parameter and flow field shortly
after the beginning of the relaxation for both a contrac-
tile and extensile system, with a = £0.2 in the units
defined above (see also the supplementary movie S1).

In passive nematic liquid crystals (i.e. a = 0) it is well
known that the dynamics of defects is greatly modified
by the so-called backflow, that is the flow induced by re-



FIG. 2: (color online) Defect pair production in an active sus-
pension of microtubules and kinesin (top) and the same phe-
nomenon observed in our numerical simulation of an extensile

nematic fluid with v = 100 and o« = —0.5. The experimental
picture is adapted by permission from Macmillan Publishers
Ltd: Nature [16], copyright (2012).

orientation of the nematic order parameter through the
elastic stresses o;; in the Navier-Stokes equation. In par-
ticular, when backflow is neglected, the defect and anti-
defect are predicted to move at the same velocity toward
each other until annihilation. Backflow tends to speed up
the +1/2 defect and to slow down the —1/2 defect, yield-
ing asymmetric trajectories [23]. In active liquid crystals
the active stress in the Navier-Stokes equation provides
a new source for flow associated with inhomogeneities
in the order parameter, as demonstrated first in a one-
dimensional thin film geometry where activity drives a
transition to a spontaneously flowing state [2]. This new
active backflow can greatly exceed the curvature-driven
backflow present in passive systems. Furthermore, the di-
rection of the active backflow is controlled by the sign of
the activity parameter o and, for a given director config-
uration, has opposite directions in contractile and exten-
sile systems. Backflow arising from active stresses drives
the +1/2 defect to move in the direction of its “tail” in
contractile systems (o > 0) and in the direction of its
“head” in extensile systems (a < 0), where the termi-
nology arises from the comet-like shape of +1/2 defects.
In contrast, due to symmetry considerations the active
backflow vanishes at the core of a —1/2 defect which thus
remains stationary under the action of active stresses.
We note that active curvature currents in the concentra-
tion equation controlled by «; have a similar effect, as
first noted by Narayan and collaborators in a systems of
vibrated granular rods [7]. Such active curvature currents
control dynamics in systems with no momentum conser-
vation, but are very small here, where the concentration
variations remain small, as seen from Fig. 1c,d and flow
controls the dynamics.

In contractile systems active backflow yields a net
speed-up of the +1/2 defects towards its anti-defect for
the annihilation shown in Fig. 1b. In extensile systems,
with « < 0, backflow drives the +1/2 defect to move
towards its head, away from its —1/2 partner in the con-
figuration of Fig. 1d, acting like an effectively repulsive
interaction. This somewhat counterintuitive effect has
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FIG. 3: (color online) Defect trajectories and annihilation
times obtained from a numerical integration of Egs. (1) for
various v and « values. (a) Defects trajectories for v = 5
and various «a values (indicated in the plot). The red and
blue curve corresponds to the positive and negative disclina-
tion respectively. The defects annihilate where the two curves
merge. (b) Same plot for v = 10. Slowing down the relax-
ational dynamics of the nematic phase increases the annihila-
tion time and for a = —0.2 reverses the direction of motion of
the +1/2 disclination. (c) Defect separation as a function of
time for & = 0.2 and various 7 values. (d) Annihilation time
normalized by the corresponding annihilation time obtained
at a = 0 (i.e. t3). The line is a fit to the model described in
the text.

been observed in experiments with extensile microtubules
and kinesin assemblies [16] and can be understood on the
basis of the hydrodynamic approach embodied in Egs.
(1). In Fig. 2 we have reproduced from Ref. [16] a se-
quence of snapshots showing a pair of +1/2 disclinations
moving apart from each other together with the same
behavior observed in our simulations.

To quantify the dynamics we have reconstructed the
trajectories of the defects by tracking the drop in the
magnitude of the order parameter. The trajectories are
shown in Figs. 3a,b where red lines in the upper portion
of the plots represent the trajectory of the +1/2 discli-
nation, while the blue lines in the lower portion of the
plot are the trajectories of the —1/2 defect. The tracks
end when the cores of the two defects merge. For small
activity and small values of the rotational friction -, the
trajectories resemble those obtained in Ref. [23] for pas-
sive systems. At large values of activity, however, the
asymmetry in defect dynamics becomes more pronounced
and when the activity dominates over orientational relax-
ation, the +1/2 disclination moves independently along
its symmetry axis with a velocity v < a &, whose direc-
tion is dictated by the sign of o. This behavior is clearly
visible in Fig. 3c showing the defect separation z(t) as a
function of time. For ~ sufficiently large, the trajectories
are characterized by two regimes. For large separation



the dynamics is dominated by the active backflow, and
thus #(t) x —« and x(t) x —at. Once the defects are
about to annihilate the attractive force Fpair o 1/x takes
over and the defects behave as in the passive case with
x(t) o \/Ta — L.

Building on these results we now propose a phe-
nomenological one-dimensional model that captures
qualitatively the dynamics of pair annihilation in active
nematics. Neglecting for simplicity the position depen-
dence of the friction, which we assume constant, the dy-
namics of a pair of disclinations initially at a distance xq
along the z axis is governed by the equations

K

plie —vp(ze)] = For— o (3)
where v, (z4) is the backflow field at the position x4 of
the +1/2 defect, given by vy(z) = vy (v — z4) +v_(z —
x_), with vy (z) the flow field due to an isolated +1/2
defect. We retain only the active contribution to the
backflow and replace the flow profiles by their constant
values at the core of the defect, with v, (z4) = vo x «
and vp(x_) = 0. Note that v, > 0 for contractile systems
and v, < 0 for extensile ones. This yields the following
simple equation for the pair separation & = —v, — 2?”,
with k = K/v. This equation explicitly captures the
two regimes shown in Fig. 3c and described earlier. The
solution takes the form

(4)

2(t) = 20 — vt + 2(k/va) In [M] .

o — 26/Vq,

The pair annihilation time ¢, is determined by z(t,) =0
and is given by t, = 20/va — (26/02) In [1 + (29v4 /2K)].
For passive systems (o = 0) this reduces to t0 = 22 /4k.
In contractile systems activity speeds up pair annihila-
tion while it slows it down in extensile systems. Our
simple model predicts that the annihilation time normal-
ized to its value in passive systems, t,/t2, depends only
on vaxo/2k ~ av. Fig. 3d shows a fit of the annihi-
lation times extracted from the numerics to this simple
formula. The model qualitatively captures the numerical
behavior.

While the effect of activity on the pre-collisional dy-
namics of a disclination pair can be accounted for rel-
atively simply in terms of active backflow, the post-
collisional behavior is dramatically affected by activity
[29]. Fig. 4 shows the evolution of the system after anni-
hilation of the initial defect pair (see also the supplemen-
tary movie S2). The frame in Fig. 4a shows the initial
configuration of the two defects while 4b shows the con-
figuration just after pair annihilation. The other frames
display the evolution in time (with time increasing from
left to right and top to bottom). Immediately after col-
lision, the system develops two density/flow bands rem-
iniscent of those observed in the absence of defects [12].
The bands, however, are unstable and quickly start de-

FIG. 4: Schlieren texture highlighting the post-collisional dy-
namics of a +1/2 pair for v = 10* and o = 0.2. (a) Indicates
the initial configuration of the defects and (b) shows the sys-
tem immediately after defect annihilation.

forming while new defect pairs “pinch off”. The dynam-
ics quickly becomes chaotic, with frequent defect forma-
tion and annihilation events in the background of an
overall proliferation of defects. The passage of defects
through a region of space lowers the local nematic order
parameter in that region. At large friction « the slow
relaxation prevents the restoration of the order parame-
ter to its initial value, leading to a progressive reduction
of the average order parameter in time. Complex tex-
tures in active nematics were also reported in Ref. [10],
although those structures are not easily decomposed in
terms of disclinations. More work is needed to fully ex-
plore this rich and complex dynamics and formulate a
quantitative classification of the behavior of defects in
active liquid crystals.
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