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We report results of directional solidification experiments conducted onboard the International
Space Station and quantitative phase-field modeling of those experiments. The experiments image
for the first time in situ the spatially-extended dynamics of three-dimensional cellular array patterns
formed under microgravity conditions where fluid flow is suppressed. Experiments and phase-field
simulations reveal the existence of oscillatory breathing modes with time periods of severals tens of
minutes. Oscillating cells are usually non-coherent due to array disorder with the exception of small
areas where the array structure is regular and stable.
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Directional solidification of binary alloys leads to the
formation of a rich variety of nonequilibrium interface
patterns that have been widely studied as examples of
pattern formation [1] as well as for their metallurgical
relevance [2, 3]. Common solidification patterns are spa-
tially extended arrays of cells or dendrites that form
above the onset of morphological instability. While ex-
tensive experimental and theoretical work during the
past several decades has yielded basic insights into those
patterns [3], their dynamics in three dimensions (3D)
still remains poorly characterized and understood. In
particular, the third dimension brings the crucial prob-
lem of understanding the spatiotemporal organization of
space-filling growth patterns, as highlighted in D’Arcy
Thomson’s seminal book On growth and form [4] and
explored since then in various physical and biological
systems [5, 6]. Transparent organic alloys have been
extensively used to image in situ the dynamics of the
solid-liquid interface [7]. However, fluid convection on
earth leads to large scale inhomogeneities of temperature
and composition in bulk samples. Those inhomogeneities
strongly influence the microstructure [8, 9] and impede
the probing of spatially extended pattern dynamics un-
der controlled diffusive growth conditions with constant
growth velocity (V ), temperature gradient (G), and al-
loy composition (c∞). Hence, experimental studies of
interface dynamics have been restricted primarily to thin
samples where fluid flow is eliminated [10–15]. In ad-
dition, computational modeling of 3D patterns has re-
mained challenging due to the several orders of magni-
tude disparity between capillary and transport scales.
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In this letter, we report the first live observation of
breathing oscillations of spatially extended 3D cellular
arrays obtained by imaging in situ the interface dy-
namics under microgravity conditions where fluid flow
is suppressed. Spatiotemporal coherence of cellular ar-
rays may thus be characterized in relation with order-
ing of the cellular array structure. Breathing modes
are generic secondary oscillatory instabilities of spatially
modulated interface patterns [16]. They have been exper-
imentally and theoretically studied in 2D for both cellu-
lar [12, 14, 17, 18] and two-phase eutectic [19] interfaces.
They have also been theoretically predicted for 3D cel-
lular growth [20, 21]. While those previous experiments
exhibited global spatiotemporal coherence over large do-
mains, the present microgravity experiments reveal a va-
riety of 3D breathing modes with limited spatiotemporal
coherence. Massively parallel 3D phase-field simulations,
which access length and time scales of millimeters and
hours respectively, allow us to recover salient features
of breathing modes and make quantitative comparisons
with in situ observations that yield further insights into
their dynamics.

Experiments were conducted onboard the Interna-
tional Space Station (ISS) in the Directional Solidifica-
tion Insert (DSI) developed by the French Space Agency
(CNES) in the frame of the DECLIC project (DEvice for
the study of Critical LIquids and Crystallization) and
dedicated to in situ and real time characterization of
the dynamical selection of the solid-liquid interface mor-
phology on bulk transparent samples. A succinonitrile-
camphor alloy was elaborated by adding c∞ = 0.24 wt%
camphor to pure succinonitrile supplied by the National
Aeronautics and Space Administration (NASA). The al-
loy preparation and crucible filling were carefully realized
under vacuum in order to avoid humidity contamination.
The cylindrical crucible, which is sealed and inserted in-
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side the Bridgman furnace, has an inner diameter of 1 cm
and a length that enables ∼10 cm of solidification, thus
allowing the study of the whole development of extended
cellular patterns from their initial formation to the steady
state. The crucible is equipped with a flat glass window
at the bottom and a lens immersed in the melt at the top.
We take advantage of the complete axial transparency
of the alloy to image a top view of the interface on a
CCD camera. A complete description of the experimen-
tal setup and process appears in [22, 23]. The physical
parameters of the alloy are the solute partition coefficient
k = 0.21, liquidus slope m = −1.365 K/wt%, Gibbs-
Thomson coefficient Γ = 6.48 × 10−2K/µm, anisotropy
ε4 = 0.007 of the solid-liquid interface tension, and liquid
solute diffusivity D = 270 µm2/s (see, e.g., [24, 25]).

The successive campaigns of experiments explored a
wide range of growth conditions. We focus here on
a temperature gradient (G = 28 K/cm) and a veloc-
ity range (V = 0.5 − 1.5 µm/s) for which oscillatory
modes were observed. Oscillations affect small regions
of the cell array when V = 0.5 µm/s, whereas the
whole pattern oscillates for V = 1.0 µm/s (see video
“Fig1a Experiment FullArray.avi” of the Supplemental
material [26]), and breathing ceases in the final stage of
cellular growth at V = 1.5 µm/s. On top view images,
oscillating cells are characterized by a periodic variation
of their cross-sectional area A(t) in a plane perpendicular
to the growth direction (bright area in Fig. 1a). Interfer-
ometry measurements performed during the experiments
and phase-field simulations show that oscillations occur
both in the vertical z direction, and in the (x, y) plane, so
that both the tip position ztip(t) and the cell area A(t)
are oscillating functions of time t. Since the center to
center distances remain constant, grooves oscillate lat-
erally. The amplitude of A(t) may either stay constant
or increase, in which case cells eventually split into two
cells, then one of these two cells usually oversteps the
other and oscillation resumes. This represents a major
difference with experiments in thin samples where tip-
splitting was observed to inhibit oscillations and rather
induce a transition to a doublet structure [14].

We studied the distribution of oscillation phase of a
large group of cells in order to assess spatiotemporal co-
herence [26]. The distribution of phases on the unit circle,
shown in Fig. 1b, reveals a large scatter of phases, there-
fore highlighting the absence of global coherence of os-
cillations, unlike in thin samples experiments [14]. Most
generally, adjacent cells do not present particular phase
relation. This lack of coherence is related to the intrinsic
short-range order of extended 3D-patterns (see FFT in
Fig. 1a), comparable to liquid structures, with numerous
topological defects (number of nearest neighbors 6= 6).

We generically observed synchronization of neighbor-
ing cells in areas where local spatial ordering was main-
tained long enough, e.g., inside the two squares in Fig. 1a
that display hexagonal and square ordering respectively.
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FIG. 1: Spatially extended breathing cellular pattern ob-
served from the liquid side in an experiment with V = 1 µm/s
and G = 28 K/cm. A top view of a cellular array is shown
in (a). The high spatial disorder of the array is highlighted
by both the ring-shaped Fast Fourier Transform of the im-
age (“FFT” inset) and the large number of array defects (the
number of nearest neighbors of each cell is indicated on the
right-hand side). All cells oscillate with nearly the same pe-
riod but different phases. The phases (θ) are plotted on the
unit circle on the lower diagrams at two times half a pe-
riod (τ/2) apart with different colors and symbols, for the
experiment (b) and the simulation (c). The large scatter of
phases indicates absence of global coherence of oscillations. In
disordered regions, temporary synchronization between first-
neighbor cells appears in both experiment and simulation,
either with phase opposition (tagged cells in (b)), or with
±2π/3 phase shift (tagged cells in (c)), which correspond to
the basic breathing modes. We provide the detailed image
processing procedures to extract A(t) for both experiments
and simulations, as well as videos of the oscillatory patterns
in the joint Supplemental material [26].
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FIG. 2: Short range correlation of hexagonal patterns at V =
1 µm/s and G = 28 K/cm. Inside the “Hexagon” region of
Fig. 1a, three groups of cells oscillate coherently with a mutual
phase difference of ±2π/3, as shown in (a). The phase-field
simulation in (b) reproduces this coherent oscillation with a
remarkably similar period.

The variations of A(t) for the hexagonal pattern are rep-
resented in Fig. 2a. The cells are organized as three sub-
lattices that oscillate with the same period and a phase
shift of ±2π/3. Cells A, B and C oscillate in phase; D, E
and F also oscillate in phase but with a −2π/3 phase shift
with respect to the first group, while the central cell G os-
cillates with a +2π/3 phase shift with respect to the first
group. A qualitatively similar ±2π/3 mode was found
in previous numerical studies, albeit in the high velocity
limit [20] or with a two-sided phase-field model [21]. We
also observed the mode with π out of phase oscillations
within a local square lattice ordering (e.g. “Square” area
in Fig. 1a) with the two sub-lattices of a checker board
oscillating in phase opposition. However those breathing
modes lead to a short range phase coherence that does
not extend beyond neighboring cells.

Even though phase locking is limited to sparse ordered
regions, the oscillation period τ is largely insensitive to

 0

 50

 100

 150

 200

 0.5  1  1.5  2

O
sc

ill
at

io
n 

pe
rio

d 
τ 

(m
in

)

Growth velocity V (µm/s)

Experiments (spatial average)
Simulations (spatial average)

Simulations (hexagonal array)
Simulations, G = 20 K/cm (hexagonal array)

5
10

100
200

0.5 1 2

 10

 100

 1

45.5 V-1.51

51.5 V-2.67

29.4 V-1.85

FIG. 3: Oscillation period vs growth velocity for
G = 28 K/cm, as well as for a different set of parame-
ters (D = 230 µm2/s, k = 0.2, G = 20 K/cm) that has a
lower critical velocity Vc ≈ 0.35 µm/s (see [26]).

the degree of phase coherence and thus remarkably uni-
form throughout the entire array. This period is plotted
in Fig. 3 as a function of V and is reasonably well fitted
by the power law τ = KV −3/2. Exponent and prefactor
are both similar to those found for breathing modes in
confined 3D-experiments [14] despite different alloys and
geometries. In thin samples, confinement imposes cell
arrangement in a row. Yet, for sample thickness above
∼ 25 µm, tip shapes are no longer ribbon-like (2D) but
actually 3D [27]. In both cases, interactions are lim-
ited to first-neighbor spacing since the Péclet number
Pe = ΛV/D, with Λ the cell spacing, is of order unity
(0.5 < Pe < 1.5 in our experiments). This very likely
explains the similar power law exponent. Lacking exper-
imental data for other alloys, a possible interpretation
is that the agreement on the prefactor is related to the
nature of the solvent (succinonitrile in both cases).

To gain further insights into breathing modes, we car-
ried out 3D phase-field simulations using an established
quantitative approach for binary alloys [27–30]. This ap-
proach renders accessible computations with local equi-
librium at the interface and a diffuse interface thickness
W much larger than the microscopic capillary length
d0 = Γ/[mc∞(1 − 1/k)] (e.g. W = 85 d0 for the present
parameters at V = 1 µm/s). We performed the simu-
lations for the physical parameters of the succinonitrile-
camphor alloy given above (see complete details of com-
putational model, parameters, and procedures in the
Supplemental Material [26]).

We carried out a first series of simulations in order
to investigate the spatially extended dynamics of cellu-
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lar arrays. Those simulations used large rectangular do-
mains with periodic boundary conditions perpendicular
to the growth direction and tracked the entire transient
recoil and destabilization of an initially planar interface.
Those simulations produced a similar oscillatory behav-
ior of cellular arrays as in the experiments with a mix of
short-range coherent breathing modes and globally inco-
herent oscillations. This is illustrated in Fig. 1c where
the phases of a large group of cells are scattered around
the unit circle but some neighbor cells with local hexago-
nal ordering display short range coherence with a ±2π/3
mode (tagged points). As in the experiment, the oscil-
lation period is uniform over the array and its average
value τ ≈ 48.1 min for V = 1 µm/s is consistent with the
experimental period τ ≈ 45.6 min.

We performed an additional series of simulations that
enforces hexagonal ordering in order to investigate the
range of existence of oscillatory modes as a function of
control parameters and cell spacing. First, we simulated
the steady-state growth of one quarter of a cell that is
part of an hexagonal array by using appropriate peri-
odic boundary conditions [26]. The cell spacing was thus
fixed by the size of the simulation box. Results of such
simulations with varying box size show that steady state
solutions only exist over a limited range of cell spacings
as shown in Fig. 4. At low G, the hexagonal branch of
steady-state solutions spans continuously a broad range
of spacings. A gap in this branch, previously found for
a different alloy and control parameters [27], appears for
intermediate values of G, and the rightmost branch dis-
appears at even higher G. Next, steady-state cells were
repeated in a larger simulation box (3/2 of a cell) with
imposed hexagonal symmetry to study breathing modes
(see details in [26]). Results of those simulations show
that cell spacings towards the end of the main (left-
most) branch display breathing oscillations when a gap is
present, and at higher G, while cells are stable when the
gap closes at lower G. Those modes are temporally sus-
tained for an extremely narrow range of spacing. Oscilla-
tions generally increase in amplitude over a few periods
ending in cell splitting, as seen experimentally. Fig. 2b
shows a sustained breathing mode that displays a period
of τ = 44.6 mn, which is close to the spatial average over
an extended array both in simulations and experiments
at V = 1 µm/s (Fig. 3). In agreement with experiments,
the oscillation period in hexagonal arrays decreases with
increasing velocity. Nonetheless a discrepancy appears in
the power law exponent, which we attribute to uncertain-
ties on physical and/or control parameters. The nominal
parameters used here give an onset velocity of morpholog-
ical instability Vc = DGk/[(k − 1)mc∞] ≈ 0.61 µm/s for
G = 28 K/cm, while Vc is lower since oscillating cells exist
at V = 0.5 µm/s in the experiments. A set of parame-
ter that reduces Vc to 0.35 µm/s reproduces a scaling of
τ(V ) more consistent with experiments (see Fig. 3). This
supports our interpretation that the behavior τ ∼ V −3/2
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FIG. 4: Phase-field predictions of steady-state branches of
hexagonal cellular arrays for V = 1 µm/s where ∆ is the cell
tip undercooling below the liquidus temperature normalized
by the freezing range mc∞(1 − 1/k).

appears when V is sufficiently higher than Vc, since the
oscillation period diverges as V → Vc. In addition, cell
spacings tend to be shorter in simulations for estimated
experimental values of G. We expect those discrepan-
cies to be resolvable by a more accurate determination of
physical and/or control parameters.

Additional simulations with larger box sizes containing
up to 24 cells show that phase coherence is maintained
spatiotemporally over the whole array when the initial
condition corresponds to perfect hexagonal order. Those
simulations further demonstrate that the lack of global
coherence in experiments and simulations is linked to spa-
tial disorder of the array. Spatial coherence is compara-
tively longer range for confined thin-sample experiments
that produce inherently ordered cellular or eutectic ar-
rays [12, 14, 17–19]. Our results show that, even though
local spatial ordering may lead to local coherence of os-
cillatory breathing modes, extended spatiotemporal co-
herence will generically not occur in a three-dimensional
configuration. Without specific preparation of the initial
state, both the intrinsic array dynamics and tip splitting
promoted by cell oscillations maintain the array disor-
der, thereby inhibiting long-range phase coherence [31].
Those results highlight a rich interplay between array
structure and dynamics in 3D.
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