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We study the dynamics of small vortex clusters with few (2–4) co-rotating vortices in Bose-Einstein
condensates by means of experiments, numerical computations, and theoretical analysis. All of
these approaches corroborate the counter-intuitive presence of a dynamical instability of symmetric
vortex configurations. The instability arises as a pitchfork bifurcation at sufficiently large values of
the angular momentum that induces the emergence and stabilization of asymmetric rotating vortex
configurations. The latter are quantified in the theoretical model and observed in the experiments.
The dynamics is explored both for the integrable two-vortex system, where a reduction of the phase
space of the system provides valuable insight, as well as for the non-integrable three- (or more)
vortex case, which additionally admits the possibility of chaotic trajectories.

Introduction. The realm of atomic Bose-Einstein con-
densates (BECs) [1] has offered a pristine setting for stud-
ies on the dynamics of few-vortex clusters [2]. Most inves-
tigations, however, have focused on either a single vortex
or large scale vortex lattices [3–6]. Recently, theoretical
investigations on the study of clusters of 2–4 vortices [7–
15], have appeared, chiefly motivated by the experimen-
tal realizations of such states [16–19]. This focus has
heretofore centered on the fundamental building block of
the vortex dipole, i.e., a pair of counter-rotating vortices.

Our aim in the present work is to explore the dynamics
of small vortex clusters of 2–4 co-rotating (same charge)
vortices. The original work of Ref. [2] and subsequent ef-
forts [20] have already paved the way for an understand-
ing of symmetric few-vortex configurations rotating as a
rigid body, and their three-dimensional generalizations,
e.g., U- and S-shaped vortices, and vortex rings [21]. In
this context, our work presents a rather unexpected twist:
we have found that the usual symmetric co-rotating vor-
tex configurations (centered line, triangle, and square)
may become dynamically unstable. Specifically, these
states become subject to symmetry breaking, pitchfork
bifurcations that lead to the spontaneous emergence of
stable asymmetric rotating vortex clusters.

We present our analysis of these features in the in-
tegrable (at the reduced particle level) setting of a co-
rotating vortex pair, and illustrate their generality by
further considering a rigidly rotating vortex triplet and
quadruplet. In the first case, we devise a theoretical for-
mulation that not only explores the instability and its
growth rate, but also enables a visualization of a two-
dimensional reduced phase space of the system in which
the pitchfork bifurcation becomes transparent. In the
latter cases, we suitably parametrize the system, explor-
ing the different regimes of symmetric and asymmetric

periodic orbits. Our theoretical analysis treats vortices
as classical particles, with dynamics governed by ordi-
nary differential equations (ODEs). This reduction of
the original vortex cluster system allows for the analytical
characterization, numerical observation and experimen-
tal confirmation of the symmetry breaking phenomena.
Theoretical Analysis. As shown in Refs. [15, 19], and

justified by means of a variational approximation [22],
vortex dynamics governed by the two-dimensional mean-
field Gross-Pitaevskii (GP) equation,

i∂tψ = −1

2
∆ψ +

1

2
Ω2(x2 + y2)ψ + |ψ|2ψ, (1)

can be reduced to a system of ODEs for the vortex
positions. In the original model (1), time and posi-
tions are measured, respectively, in units of ω−1

z and
the harmonic oscillator length along the z-direction, and
Ω = ωx/ωz = ωy/ωz, with ωj being the harmonic trap
frequency along the j-direction [4]. This ODE reduction
is the starting point for our analysis.
The dynamics of vortex m at position (xm, ym) arises

from two contributions: (i) a position-dependent vortex
precession about the trap center with frequency Sm ωpr,
and (ii) a vortex-vortex interaction with vortex n that
induces a velocity perpendicular to their line of sight of
magnitude Sn ωvort/ρ

2
mn, where ρmn is the distance be-

tween vortices m and n, Sm and Sn are their respec-
tive charges, and ωvort is a dimensionless constant; see
Ref. [15, 19]. The equations governing the dynamics of
N interacting vortices embedded in a BEC are therefore

ẋm = −Smωprym − ωvort

2

∑

n6=m

Sn

ym − yn
ρ2mn

,

ẏm = Smωprxm +
ωvort

2

∑

n6=m

Sn

xm − xn
ρ2mn

.
(2)



2

The precession about the trap center can be approxi-
mated by ωpr = ω0

pr/(1− r2/R2
TF), where the frequency

at the trap center is ω0
pr = ln

(

A µ

Ω

)

/R2
TF, µ is the chem-

ical potential, RTF =
√
2µ/Ω is the Thomas-Fermi (TF)

radius, and A is a numerical constant [3, 15, 19]. To
describe better the actual vortex dynamics in the trap,
the constant ωvort in Eqs. (2) may be adjusted to ac-
count for the screening of vortex interactions due to the
background density modulation [23].
We now focus on the co-rotating vortex (S1 = S2 = 1)

pair. We proceed to adimensionalize Eqs. (2) by scaling
(x, y) by RTF and time by 1/ω0

pr, and use polar coor-
dinates (xn, yn) = (rn cos(θn), rn sin(θn)). Then, seeking
symmetric stationary states r1 = r2 = r∗ and θ1−θ2 = π
yields the rotation frequency for two vortices:

ωorb = θ̇1 = θ̇2 =
c

2r2∗
+

1

1− r2∗
, (3)

where c = 1
2 (ωvort/ω

0
pr) yields a measure of the relative

strength of vortex interaction and spatial inhomogene-
ity. The comparison of the orbital frequency between
the ODE and the GP models is given in Fig. 1a. Given
the rigidly rotating nature of this state, consideration of
δmn = θm − θn renders this state a stationary one; lin-
earizing around it using rm = r∗+Rm and δmn = π+δm
yields the following equations of motion for the pertur-
bations about the symmetric equilibrium:

R̈m = −
ω2
ep

2
(Rn −Rm) , δ̈m = −

ω2
ep

2
(δm − δn) ,

with ω2
ep = c2

2r4
∗

− 2c
(1−r

2
∗
)2
.

It follows straightforwardly that this squared epitro-
choidal (motion of a point in a circle that is rotating
about another circle) relative precession frequency for
two vortices changes sign at r2cr =

√
c/(

√
c + 2). This

signals our first fundamental result, namely the desta-

bilization of the symmetric co-rotating vortex pair state
for sufficiently large symmetric distances of the vortices
from the trap center. A comparison of the ODE and
GP models for the orbital and epitrochoidal precession
frequencies for these two cases is given in Fig. 1a-b show-
ing good agreement between the two. Also, by means of
a numerical Bogolyubov-de-Gennes stability analysis in
the rigidly rotating reference frame, we have verified that
the relevant bifurcation is indeed also present in the GP
model (results not shown here).
The instability of symmetric states suggests the poten-

tial existence of additional, asymmetric, ones. Seeking
rigidly rotating states with δmn = π and r∗1 6= r∗2 yields

−r∗1r∗2(r∗1 + r∗2)
2 + c

(

1− r∗21
) (

1− r∗22
)

= 0,

which will be the condition defining our radially asym-

metric solutions. The mirror symmetry of the 2-vortex
system predisposes towards the pitchfork, symmetry

breaking nature of the relevant bifurcation, a feature ver-
ified by the diagram of Fig. 1c. This diagram is given for
the angle φ = tan−1 r2/r1 as a function of the angular
momentum L0 = r21 + r22 , which is a conserved quantity
for our system [26]. Interestingly, if the single dimen-
sionless parameter of the system is small (c < 3), then
the critical value Lcr for L0 —at which the bifurcation
from symmetric to asymmetric periodic orbits occurs— is
supercritical, while if c is sufficiently large (c > 3), it be-
comes subcritical [27] (not shown). Importantly, for the
experimental parameters of this work, the bifurcation is
supercritical and thus the asymmetric orbits generated
by the symmetry breaking bifurcation are dynamically

stable. This has been verified in the full Gross-Pitaevskii
model (1), as well as in the experiments (see below).
To elucidate the pitchfork nature of the bifurcation, we

develop a phase plane representation for all 2-vortex con-
figurations. The integrability of the reduced 2-particle
description can be understood on the basis of the fact
that this 4-dimensional system has two integrals of mo-
tion, namely the angular momentum L0, and the Hamil-
tonian H , which can be written in polar coordinates as

H =
1

2
ln
[(

1− r21
) (

1− r22
)]

− c

2
ln
[

r21 + r22 −D)
]

,

whereD ≡ 2r1r2 cos(δ) and δ = θ2−θ1. Using L0 and the
angle φ to express r1 and r2, one can rewrite the Hamil-
tonian as a function of (φ, δ) thereby effectively reducing
the 4-dimensional system to a 2-dimensional one. Thus,
for different values of L0, we can represent the orbits in
the effective phase plane of (φ, δ) in which the different
orbits correspond to iso-energetic contours of constant
H(φ, δ). This is shown in Fig. 2 for values that are both
below and above than the critical value of L0 at fixed c.
It can then be inferred that the symmetric fixed point
with (φ, δ) = (π/4, π) is stable in the former case, while
it destabilizes in the latter case through the emergence
of two additional asymmetric (φ 6= π/4) states along the
horizontal line δ = π of anti-diametric vortex states.
Remarkably, although the properties of the system dra-

matically change as we go from two vortices to three and
four, the symmetry breaking bifurcation associated with
the symmetric solutions persists. In particular, when
N > 2, the persistence of the two conservation laws dis-
cussed above is not sufficient to ensure integrability of the
system, and its absence is manifested in a dramatic form
in the resulting 6 (N = 3) and 8 (N = 4) dimensional
systems through the presence of chaotic orbits. Never-
theless, one can still analyze the highly symmetric rigidly
rotating states of the system theoretically.
For N = 3, this state is an equilateral triangle such

that r1 = r2 = r3 = r∗ and δi,i+1 = 2π/3, with an or-
bital frequency predicted as ωorb,3 = c

r2
∗

+ 1
1−r2

∗

. In the

rotating frame, the linear stability analysis around this
rigidly rotating triangle can be performed giving rise to

an epitrochoidal frequency ω2
ep,3 = c2

r4
∗

− 2c
(1−r2

∗
)2
. In this
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FIG. 1: (Color online) (a) Orbital and (b) epitrochoidal frequencies for two vortices vs. radial position (in rescaled units) from
the center. The solid line represents results from the ODE and the dotted line from the GP model. The vanishing of the latter
signals the onset of instability. Here, Ω = 0.05 and µ = 1. (c) Bifurcation parameter φ/π, which equals 1/4 when r1 = r2,
vs. the square root of the angular momentum for c = 0.1. Panels (d) and (e) depict the corresponding phenomena for N = 3
and N = 4 vortices for c = 0.1. Panels (c), (d) and (e) include a few configurations along the main bifurcation branches ([blue]
solid and [red] dashed lines corresponding, respectively, to stable and unstable configurations) depicting the relative position
of the vortices (red triangles) with respect to the center of the condensate (green crosses).
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FIG. 2: (Color online) (a) Contours from the reduced Hamil-
tonian for vortices close to the center of the trap, i.e. L0 = 0.16
below critical (L0 < Lcr = 0.273), and (b) their respective or-
bits in the rotating frame defined by the symmetric configura-
tion. Panels (c) and (d) depict, respectively, the same quanti-
ties but for vortices further out from the center for L0 = 0.36
above critical (L0 > Lcr = 0.273). The circles and triangles
correspond, respectively, to the initial and final positions of
the two vortices. Each color on the contour plot matches the
corresponding orbit in the position diagram. Here, c = 0.1.

case too, a critical radius exists r2cr,3 =
√
c/(

√
c +

√
2),

such that the symmetric state is destabilized and stable
asymmetric orbits arise past this critical point, as can be
seen in Fig. 1d. The dynamical picture is considerably
more complicated but the conservation of the angular
momentum ensures that the dynamical evolution resides
on the surface of a Bloch sphere. We thus define two
angular variables, tanφ = r2/r1 and cos θ = r3/

√
L0,

and depict the associated pitchfork bifurcation in Fig. 1d
for the subspace of solutions constrained to r1 = r2 and
δ12 = δ23. This bifurcation diagram describes a vor-
tex configuration containing a stable symmetric rotat-
ing triangle before the bifurcation and stable asymmet-
ric rotating triangles after the bifurcation. In addition to

the equilibrium and near-equilibrium orbits, we observe
chaotic orbits arising both in a more localized form, ex-
ploring the vicinity of equilibrium orbits, and in a more
extended one spanning all space (not shown).

While the general phenomena for N = 4 are already
rather complex, some basic features can still be inferred
and the symmetry breaking nature of the proposed insta-
bility persists —cf. Fig. 1e. Here, φ = tan−1 r3/r1, and
we have constrained the vortices to be in a cross with
right angles and r1 = r3 and r2 = r4. A general ex-
pression for the orbital frequency of the rigidly rotating

state is ωorb,N = (N−1)c
2r2

∗

+ 1
1−r2

∗

, which is valid for any

N . In the case of the square configuration with ri = r∗
and δi,i+1 = π/2, there emerge two epitrochoidal vibra-
tional motions with frequencies

√
−λ1 and

√
−λ2, where

λ1 = 3c
(1−r2

∗
)2

− 9c2

4r4
∗

, and λ2 = 4c
(1−r2

∗
)2

− 2c2

r4
∗

. These, in

turn, correspond to two critical points: one identical to
the one given above for the N = 3 case, and one that
is always higher, given by r2cr,4 =

√
3c/(

√
3c+ 2); hence,

the same phenomenology persists.

Experimental Observations. We now discuss experi-
mental manifestations of the symmetry breaking bifur-
cation and the emergence of asymmetric configurations.

The details of the experimental setup are described in
Refs. [17, 19]. We begin with a magnetically-trapped
BEC of N ∼ 5–8× 105 atoms in the |F = 1,mF = −1〉
hyperfine level of 87Rb. The radial and axial trap fre-
quencies are (ωr, ωz)/2π = (35.8, 101.2)Hz. Vortices are
introduced through a process of elliptical magnetic trap
distortion and rotation [24] during evaporation [25]. In
terms of the trap frequencies along the major and minor
axes of the distorted potential, ωx and ωy respectively, an
ellipticity ǫ = (ω2

x −ω2
y)/(ω

2
x +ω2

y) = 0.20 and a rotation
frequency of 8.5Hz usually produces a co-rotating pair.
Higher rotation frequencies are used to generate larger
numbers of co-circulating vortices.

A partial-transfer (5%) imaging method [17] is em-
ployed to create a sequence of density profiles, as shown
in Fig. 3a–d. The effect of the extractions is primarily to
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diminish the number of atoms in the condensate [14, 17].
Atomic losses have little effect on the parameter c, which
scales only as logN ; thus c falls between 0.11 and 0.10
over the rangeN = 0.3–0.8×106 atoms. For convenience,
we take c = 0.1 in the following analysis.

We examine 52 experimental time series consisting of
8 snapshots spanning 240 to 480 ms. For each snap-
shot the vortex centers and the radius of the cloud are
extracted using least squares fitting (see panels a–d in
Fig. 3). The vortex positions are then normalized to
the BEC radius (i.e., TF units) and the angular momen-
tum L0 and Hamiltonian H are computed for each frame
(panels e–h in Fig. 3). For each series, the average an-
gular momentum L0 and Hamiltonian H are determined
(horizontal dashed lines in the middle panels in Fig. 3).
Using L0 we compare the experimental points represent-
ing each orbit in the (φ, δ) plane to the isocontour of H
corresponding to H , as shown in the right column of pan-
els in Fig. 3, finding good agreement between the two.

Panels a–d in Fig. 3 depict typical time series, together
with their respective fits, that exemplify the different
qualitative cases that we observed in the experiments.
In particular, the vortex dynamics depends on whether
the average angular momentum is below or above the
critical threshold Lcr = 2r2cr. This distinguishes cases in
which asymmetric orbits are, respectively, non-existent
and possible. The different qualitative cases that we ob-
serve may be grouped as follows:
• For L0 < Lcr and relatively small H , the experiment
displays symmetric orbits (rows a and e in Fig. 3).
• For L0 > Lcr and moderate H , the experiment dis-
plays (i) orbits where both vortices (in the rigidly ro-
tating frame) are approximately on the same side of the
cloud chasing each other on the same path (rows b and
f in Fig. 3) or (ii) asymmetric orbits (rows c and g in
Fig. 3). The particular class of orbit is determined by
the initial conditions. Initial conditions inside the area
delimited by the separatrix (red double-loop curve in the
right panels of Figs. 3f and 3g) emanating from the sad-
dle point (φ, δ) = (π/4, π) give rise to asymmetric orbits.
• For L0 > Lcr and large H, the experiment displays or-
bits in which one vortex remains close to the center while
the other orbits around it close to the periphery of the
cloud (rows d and h in Fig. 3).

As is clear from these examples and the remaining 48
data sets (see supplemental material), asymmetric orbits
are found only when L0 > Lcr and when the vortex orbits
fall inside the asymmetric minima regions of the Hamil-
tonian picture in the (φ, δ) plane. Asymmetric solutions
are absent in all of the cases for which L0 < Lcr. These
results are in good agreement with the theoretical pre-
diction of the pitchfork bifurcation depicted in Fig. 1c.
Note that some of the experimental vortex trajectories,
which are measured over a fixed time interval, span only
a fraction of the full period of their corresponding orbits
(cf. left panel of Fig. 3f); the latter vary in duration and
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FIG. 3: (Color online) (a–d): Typical experimental series for
the dynamics of two co-rotating vortices (time indicated in
ms). The large (green) circles and the (red) crosses represent,
respectively, the fitted TF radius and center of the cloud while
the small (yellow) dots depict the fitted vortex centers. The
(red) dashed circles represent the critical radius, rcr, above
which symmetric orbits become unstable. (e–h): Manifesta-
tion of the pitchfork bifurcation for the experimental series
depicted in panels a–d which correspond to c = 0.1. Left col-
umn: experimental vortex positions and their corresponding
orbit from the reduced ODE model (solid line), in TF units
in the rigidly rotating frame. Middle column: corresponding
L0 (blue circles) and −H (green squares) and their averages
(horizontal dashed lines) as well as the critical value for L0

(solid horizontal line). Right column: corresponding orbits in
the (φ, δ) plane along with isocontours for constant H (high-
lighted in dark gray is the isocontour corresponding to the
average H and in red is the separatrix delimiting the area
containing asymmetric orbits).

can become quite long (e.g., close to a separatrix).
To extend our considerations, we briefly present a com-

parison between experiment and theory for N = 3 and
N = 4 vortices. The main phenomena are depicted us-
ing two examples for each case in Fig. 4. Panels a and
b correspond to the N = 3 vortex case below and above



5

0 200 400
0

0.2

0.4

0.6

0.8

L 0  &   
   

−
H

t

e)

0 200 400
0

0.2

0.4

0.6

0.8

t

f)

0 200 400
0

0.2

0.4

0.6

0.8

t

g)

0 200 400
0

0.2

0.4

0.6

0.8

t

h)
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the critical threshold. (e–h): Corresponding time series for
L0 and −H . Same notation and units as in Fig. 3.

the pitchfork bifurcation (see panel e and f). Panels c
and d depict the equivalent scenario for N = 4 vortices.
As the figure illustrates, and is observed in all of the
cases that we studied (17 data sets for N = 3 and 5 data
sets for N = 4; not shown), the main phenomenology
for N = 3 and N = 4 persists in that all configurations
with L0 > Lcr are not symmetric, and symmetric con-
figurations —or epitrochoidal oscillations about them—
are only present when L0 < Lcr.
Conclusions. We have revisited the theme of co-

rotating few vortex clusters in atomic Bose-Einstein con-
densates. By a combination of theoretical analysis,
numerical computation and experimental observation,
we have illustrated a strong manifestation of symmetry
breaking through a pitchfork bifurcation, which leads to
the destabilization of symmetric solidly rotating config-
urations and gives rise to the the emergence of stable

rigidly rotating but asymmetric vortex configurations.
We showed that this analysis is fruitful not only for the
integrable (at the reduced particle level) two-vortex set-
ting, where a suitable parametrization of the phase space
was provided, but also for the non-integrable cases of
N = 3 and N = 4 vortices where chaotic orbits exist.
Naturally, it would be interesting to provide a more

global characterization of the dynamics of the three-body
problem, which is perhaps the most analytically tractable
and intriguing case due to its potential for chaos. An-
other expansion of the present considerations involves
their generalization to higher dimensions. In this case,
it would be interesting to see, upon gradual decrease of
the trapping frequency in the third dimension, whether
the symmetry-breaking phenomena persist for line vor-
tices and vortex rings. These aspects are presently under
consideration and results will be reported elsewhere.
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