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In this Letter, we use a non-equilibrium statistical theory, the Stochastic Structural Stability The-
ory (SSST), to show that an extended version of this theory can make predictions for the formation
of non-zonal as well as zonal structures (lattice and stripe patterns) in forced homogeneous turbu-
lence on a barotropic β-plane. Comparison of the theory with nonlinear simulations demonstrates
that SSST predicts the parameter values for the emergence of coherent structures and their charac-
teristics (scale, amplitude, phase speed) as they emerge and at finite amplitude. It is shown that
non-zonal structures (lattice states or zonons) emerge at lower energy input rates of the stirring
compared to zonal flows (stripe states) and their emergence affects the dynamics of jet formation.
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Turbulence in planetary atmospheres and in plasma
flows is observed to be organized into large scale zonal jets
with long-lasting coherent eddies or vortices embedded in
them [1–4]. The jets control the transports of heat and
chemical species in planetary atmospheres and separate
the high temperature plasma from the cold containment
vessel wall in magnetic plasma confinement devices. It
is therefore important to understand the mechanisms for
the emergence, equilibration and maintenance of these
coherent structures and the simplest model for this pur-
pose is barotropic dynamics on a β-plane. In this Letter,
we present a theory that predicts the formation and non-
linear equilibration of large scale coherent structures in
barotropic β-plane turbulence and then test this theory
against non-linear simulations.
A large number of numerical simulations of this model

have shown that robust, large scale zonal jets emerge in
the flow and are sustained at finite amplitude [5–9]. In ad-
dition, large scale westward propagating coherent waves
that were called satellite modes or zonons were found to
coexist with the zonal jets [8, 10, 11]. The emergence of
jets has been described in terms of an anisotropic inverse
energy cascade [6, 12, 13], or in terms of inhomogeneous
mixing of vorticity [14, 15], or in terms of a direct trans-
fer of energy from small scale waves into the zonal jets,
through either non-linear interactions between finite am-
plitude Rossby waves [16, 17], or through shear straining
of the small scale waves by the jet [18]. However, the
mechanism for the emergence and maintenance of non-
zonal structures remains elusive. Statistical equilibrium
theory applied in the absence of forcing and dissipation,
has been able to predict both jets and coherent vortices
as maximum entropy structures [19] and a recent study
has shown correspondence of the theoretical results with
non-linear simulations in the limit of weak forcing and dis-
sipation [20]. Nevertheless, the relevance of these results
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in planetary and plasma flows that are strongly forced
and dissipated and are therefore out of equilibrium re-
mains to be shown.
In this Letter, we present results based on an exten-

sion of a non-equilibrium statistical theory, the Stochas-
tic Structural Stability Theory (SSST) [21–23] or equiv-
alently the Second Order Cumulant Expansion theory
(CE2) [24–26]. While recent studies have demonstrated
that SSST can predict the structure of zonal flows in tur-
bulent fluids [25, 27, 28], the results presented in this
Letter demonstrate that the extended version of SSST
can predict the emergence of both zonal and non-zonal
coherent structures and can capture their finite ampli-
tude manifestations. In addition, we show that the ex-
tended version of SSST can also capture the disruption of
jet formation caused by the presence of non-zonal struc-
tures, which was recently hypothesized in studies com-
paring the predictions of SSST with non-linear simula-
tions [25, 27, 28]. The emergence of non-zonal and zonal
structures described above is similar to formation of the
lattice and stripe patterns in homogeneous thermal non-
equilibrium systems [29]. The analogy between the for-
mation of stripes and zonal jets has been recently em-
phasized using SSST dynamics [30]. In this Letter we
formulate the dynamics that can produce lattice states
in turbulent flows.
Consider the stochastically forced barotropic vorticity

equation on a plane tangent to the surface of a planet:

∂tζ + ψxζy − ψyζx + βψx = −rζ − ν∆2ζ + f. (1)

The relative vorticity is ζ = ∆ψ, ψ is the streamfunction,
∆ = ∂2xx + ∂2yy is the Laplacian, x is in the zonal (east-
west) direction and y is in the meridional (north-south)
direction, β = 2Ω cosφ0/R is the gradient of planetary
vorticity at latitude φ0, Ω is the rotation rate and R the
radius of the planet. Equation (1) is a good approxima-
tion for the dynamics of non-divergent motions at the
midlatitudes of the planet and is also the infinite effec-
tive Larmor radius limit of the Charney-Hasegawa-Mima
equation that governs drift-wave turbulence in plasmas.
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FIG. 1. The zmf (red lines) and nzmf (blue lines) indices as
a function of ε/εc and Rβ for the non-linear (solid lines) and
SSST (dashed lines) integrations. The critical εc is the energy
input rate at which the SSST predicts structural instability
of the homogeneous turbulent state. Zonal jets emerge for
ε > εnl, with εnl = 15.9εc.
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FIG. 2. Energy power spectra, log(Ê(k, l)), obtained from
non-linear simulation at (a) ε/εc = 2.6 and (b) ε/εc = 30.
In (a) the flow is dominated by a (|k|, |l|) = (1, 5) non-zonal
coherent structure. In (b) the flow is dominated by a coherent
zonal flow at (k, |l|) = (0, 3).

The effects of baroclinicity and divergence have been ne-
glected for simplicity, but can be easily incorporated as
in previous SSST studies for the emergence and equili-
bration of jets in the outer planets [31] and in drift-wave
turbulence [32]. We are assuming linear damping with
coefficient, r, representing the Ekman drag induced by
the horizontal boundaries and hyper-diffusion with co-
efficient ν, that dissipates the energy flowing into unre-
solved scales. The forcing term, f , is necessary to sustain
turbulence, and may parameterize processes that have
not been included in the dynamics, such as forcing from
small scale convection. In many previous studies, this ex-
citation was taken as a temporally delta correlated and
spatially homogeneous and isotropic random stirring. We
follow the same forcing protocol and consider an isotropic
ring forcing, injecting energy at rate ε in a narrow ring of
wavenumbers of width ∆Kf around the total wavenum-
ber Kf .
We solve (1) in the doubly periodic domain 2π × 2π.

The calculations in this Letter are with β = 10, r = 0.01,
ν = 2 · 10−6, Kf = 8 and ∆Kf = 1. To illustrate
the characteristics of the turbulent flow and the emer-
gence of coherent structures, we consider two indices.
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FIG. 3. (a) Snapshot of the streamfunction ψ(x, y, t) and
(b) Hovmöller diagram of ψ(x, y = π/4, t) obtained from non-
linear simulation at ε/εc = 2.6. The thick lines in (b) cor-
respond to the phase speed obtained from (5). (c) Snapshot
of the streamfunction ψ(x, y, t) and (d) Hovmöller diagram of

the x-averaged ψ(y, t) obtained from non-linear simulation at
ε/εc = 30.

The first is the zonal mean flow index [25] defined as
the ratio of the energy of zonal jets over the total en-

ergy, zmf =

∑

l:l<Kf
Ê(k=0,l)

∑

kl
Ê(k,l)

, where Ê is the time av-

eraged energy power spectrum of the flow and k, l are
the zonal and meridional wavenumbers respectively. The
second is the non-zonal mean flow index defined as the
ratio of the energy of the non-zonal modes with scales
lower than the scale of the forcing over the total energy:

nzmf =

(

∑

kl:K<Kf
Ê(k,l)−

∑

l
Ê(k=0,l)

)

∑

kl
Ê(k,l)

. Figure 1 shows

both indices as a function of the energy input rate ε and
the corresponding value of the non-dimensional zonostro-
phy parameter Rβ = 0.7(εβ2/r5)1/20, which was used
in previous studies to characterize the emergence and
structure of zonal jets in planetary turbulence [11, 15].
For ε smaller than a critical value εc (corresponding to
Rβ = 1.64), the turbulent flow is homogeneous and re-
mains translationally invariant in both directions. When
ε > εc, the translational symmetry of the flow is broken
and non-zonal structures form with scales larger than the
scale of the forcing.

The time averaged power spectrum, shown in Fig. 2(a)
for ε = 2.6εc, has pronounced peaks at (|k|, |l|) = (1, 5)
that correspond to coherent structures propagating west-
ward (cf. Fig. 3(a),(b)) with approximately the Rossby
wave phase speed for this wave. However, at larger ε
the propagation speed of these structures departs from
that of Rossby waves. For ε > εnl (corresponding to
Rβ = 1.88) robust zonal jets emerge. For example the
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peaks at (k, |l|) = (0, 3) in the spectrum of Fig. 2(b) cor-
respond to coherent zonal jets (cf. Fig. 3(c),(d)). From
Fig. 1 we see that while the jets contain over half of
the total energy, substantial power remains in non-zonal
structures.

In this Letter we address the emergence of these non-
zonal structures, called satellite modes [8] or zonons
[10, 11], and assess their effect on jet formation using
another interpretation of SSST. SSST describes the sta-
tistical dynamics of the first two equal time cumulants of
Eq. (1). The first cumulant is Z(x, t) ≡ 〈ζ〉 (the brackets
denote an ensemble average) and the second cumulant
C(x1,x2, t) ≡ 〈ζ′1ζ

′
2〉 is a function of the vorticity devia-

tion ζ′i = ζi −Zi at the two points xi = (xi, yi) (i = 1, 2).
It can be shown from (1) that the equations for the evo-
lution of the cumulants are:

∂tZ + UZx + V (β + Zy) + rZ + ν∆2Z =

= ∂x
(

∂y1
∆−1

2 C
)

x1=x2

− ∂y
(

∂x1
∆−1

2 C
)

x1=x2

,

(2a)

∂tC = (A1 +A2)C + Ξ, (2b)

where

Ai = −Ui∂xi
− Vi∂yi

−(β + Zyi
)∂xi

∆−1
i +

+ Zxi
∂yi

∆−1
i − r − ν∆2

i , (3)

acts at xi = (xi, yi) and governs the linear dynam-
ics about the instantaneous mean flow U = [U, V ] =
[−∂y 〈ψ〉 , ∂x 〈ψ〉]. In (2b), Ξ contains the covariance of
the external forcing and terms related to third order cu-
mulants. A second order closure is obtained if the third
order cumulant is ignored and Ξ is set to be the spatial
covariance of the stochastic forcing f . In most earlier

studies of SSST, the ensemble average was assumed to
represent a zonal average. However, with this interpreta-
tion the non-zonal waves are treated as incoherent and
their emergence and characteristics cannot be studied.
In this Letter, we adopt the more general interpretation
found in studies of baroclinic turbulence [23, 33], that
the ensemble average represents a Reynolds average with
the ensemble mean representing coarse-graining. With
this interpretation of the ensemble mean, Eq. (2) pro-
vides the statistical dynamics of the interaction of the
ensemble average field, which can be a zonal or a non-
zonal coherent structure, with the fine-grained field, rep-
resented in the theory through its covariance C. The
fixed points of the SSST dynamics define ideal equilibria
that are formally realizable only in the infinite ensemble
limit. However, we show here that these equilibria man-
ifest in actual nonlinear simulations (cf. also [27, 30]).
When these equilibria become unstable, a structural re-
organization of the turbulence occurs and the turbulent
flow bifurcates to a different attractor.
Equations (2), admit for ν = 0 the equilibrium

UE = V E = 0, CE = Ξ/(2r), (4)

that has zero large scale flow and a homogeneous eddy
field with spatial covariance dictated from the forcing.
We now investigate the SSST stability of this equilibrium
as a function of the energy input rate, ε, and the charac-
teristics of the equilibrated unstable structures and relate
the outcome of the analysis to the results in the non-
linear simulations of (1). The stability of the homoge-
neous equilibrium (4) is assessed by introducing perturba-
tions [δZ, δC] = [δZnm, δCnm]ein(x1+x2)/2+im(y1+y2)/2eσt

in Eq. (2) linearized about equilibrium (4), and calculat-
ing the eigenvalue σ. It can be shown that σ satisfies the
non-dimensional equation

ε̃Kf

2π∆Kf

∑

k,l

(m̃k̃ − ñl̃)
[

ñm̃(k̃2+ − l̃2+) + (m̃2 − ñ2)k̃+ l̃+

]

(1 − Ñ2/K̃2)

2ik̃+(k̃+ñ+ l̃+m̃)− iñ
(

K̃2 + K̃2
s

)

/2 + (σ̃ + 2)K̃2K̃2
s

= (σ̃ + 1)Ñ2 − iñ, (5)

where (ñ, m̃, k̃, l̃) = (n,m, k, l)r/β, σ̃ = σ/r are the non-
dimensional wavenumbers and growth rate respectively,
K̃2 = k̃2 + l̃2, K̃2

s = (k̃ + ñ)2 + (l̃ + m̃)2, Ñ2 = ñ2 +

m̃2, k̃+ = k̃ + ñ/2, l̃+ = l̃ + m̃/2 and the summation is

over integer values of (k, l) satisfying |K̃ − (Kfr/β)| <
∆Kfr/β [34]. The non-dimensional energy input rate ε̃ =
εβ2/r5, which is the bifurcating parameter in this Letter,
is related to the zonostrophy parameter through Rβ =

0.7ε̃1/20. For n = 0, Eq. (5) reduces to the equation that
determines the emergence of zonal flows [25, 35].

For small values of the energy input rate ε̃, the ho-
mogeneous state is stable (i.e. ℜ(σ) < 0 for all n,m).
When ε̃ exceeds a critical ε̃c, the homogeneous flow be-

comes SSST unstable and coherent structures emerge.
The critical ε̃c is defined as min(n,m)ε̃t, where ε̃t is the
energy input rate that renders wavenumbers (n,m) neu-
tral (ℜ(σ) = 0). The critical ε̃c depends in general on the
forcing characteristics and for the ring forcing at Kf = 8,
ε̃c = 2.48 · 107 or Rβ = 1.64 [36]. The growth rates as
a function of the integer valued wavenumbers, (n,m), of
the structure are shown in Fig. 4. For ε/εc = 2.6, the
structure with the largest growth rate, is non-zonal with
(|n|, |m|) = (1, 5) and has ℑ(σ) > 0, implying retrograde
propagation of the eigenstructure. Note also that for this
energy input rate, the zonal flows (n = 0) are SSST stable
and jets are not expected to form. For ε/εc = 30, both
stationary zonal jets (ℑ(σ) = 0) and retrograde propa-
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FIG. 5. (a) Snapshot of ψ(x, y, t) and (b) Hovmöller diagram
of ψ(x, y = π/4, t) of an SSST integration at ε/εc = 2.6. The
thick dashed lines show the phase speed obtained from (5).

gating non-zonal structures are unstable, but the zonal
jets have smaller growth rates compared to the non-zonal
structures [37]. Numerical integration of the SSST sys-
tem (2), shows that for ε > εc the unstable structures
equilibrate at finite amplitude after an initial period of
exponential growth. Figure 5(a) shows the equilibrium
structure with the largest domain of attraction, when
ε/εc = 2.6. This structure coincides with the finite ampli-
tude equilibrium of the fastest growing (|n|, |m|) = (1, 5)
eigenfunction and propagates as illustrated in Fig. 5(b)
in the retrograde direction with a speed approximately
equal to the phase speed of this unstable eigenfunction.
A proxy for the amplitude of these equilibrated structures
are the zmf and nzmf indices that are calculated for the
SSST integrations and are shown in Fig. 1. As the energy
input rate increases, the non-zonal structures equilibrate
at larger amplitudes. However, for ε > εnl, the equilibria
with the largest domain of attraction are zonal jets and
the flow is dominated by these structures (cf. Fig. 1).

The results of the SSST analysis are now compared to
non-linear simulations. The stability analysis accurately
predicts the critical εc for emergence of non-zonal struc-
tures in the non-linear simulations as shown in Fig. 1.
The finite amplitude equilibria obtained when ε > εc also
correspond to the dominant structures in the non-linear
simulations. For ε/εc = 2.6, the spectra in the nonlinear
simulations show significant power at (|n|, |m|) = (1, 5),
corresponding to the SSST structure with the largest do-

main of attraction. Remarkably, the phase speed of these
waves observed in the non-linear simulations and the am-
plitude of these structures as illustrated by the nzmf
index are approximately equal to the phase speed and
amplitude of the corresponding SSST translating equilib-
rium structure (cf. Figs. 1, 3 and 5). For ε > εnl, in both
nonlinear and SSST simulations zonal jets emerge and
the power of the non-zonal structures is reduced. Com-
parison of the number of jets and their amplitude be-
tween the SSST and the nonlinear simulations also shows
good agreement (not shown). This demonstrates that the
SSST system can predict the amplitude and characteris-
tics of both the non-zonal and the zonal structures that
emerge in the turbulent flow.

While the regime transition that occurs at εc is pre-
dicted by the stability equation (5), the second transi-
tion, which is associated with the emergence of zonal
flows and occurs at εnl, is more intriguing. Equation
(5) predicts that the zonal structures become unstable at
εsz = 4εc < εnl. In previous studies of SSST dynamics
restricted to the interaction between zonal flows and tur-
bulence, these initially unstable structures were found to
equilibrate at finite amplitude and as a result the predic-
tions of the SSST theory did not agree with non-linear
simulations [25, 27]. Preliminary calculations show that
within the context of this generalized SSST analysis that
takes into account the dynamics of non-zonal structures
as well, these equilibria are found to be saddles that are
stable to zonal but unstable to non-zonal perturbations.
The threshold for the emergence of jets in the SSST and
in the nonlinear simulations is therefore determined as
the energy input rate at which an SSST stable, finite
amplitude zonal jet equilibrium exists. It is worth not-
ing, that a method to correctly obtain this threshold εnl
even within the context of SSST employed with a zonal
average has been recently developed [27].

In summary, we presented a theory that shows that
large scale structure in barotropic turbulence arises
through systematic self-organization of the turbulent
Reynolds stresses, in the absence of cascades. The the-
ory allowed the determination of conditions for the emer-
gence of coherent structures in homogeneously forced
flows and we have demonstrated, through comparison
with nonlinear simulations, that it predicts both the
emergence and the finite amplitude equilibration of these
structures. An advance made in this Letter is the develop-
ment of the theoretical framework that accounts for the
emergence of westward propagating non-zonal (or lattice)
states in turbulence and for their effect on the zonal jet
dynamics. The relation of these states to westward prop-
agating vortex rings in the ocean and coherent vortices
in planetary atmospheres will be the subject of future
research.
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