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We provide the first experimental demonstration of defect states in parity-time (PT ) symmetric
mesh-periodic potentials. Our results indicate that these localized modes can undergo an abrupt
phase transition in spite of the fact that they remain localized in a PT -symmetric periodic environ-
ment. Even more intriguing is the possibility of observing a linearly growing radiation emission from
such defects provided their eigenvalue is associated with an exceptional point that resides within the
continuum part of the spectrum. Localized complex modes existing outside the band-gap regions
are also reported along with their evolution dynamics.
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Defects play a crucial role in determining the physi-
cal and chemical properties of solids [1]. In semiconduc-
tor crystals, the presence of defects leads to both bulk
and surface electronic states that ultimately affect charge
transport processes. When analyzed from the viewpoint
of their corresponding band structure, such localized
quantum eigenstates are known to reside within the for-
bidden energy gaps. In optics, similar effects are also pos-
sible in photonic crystal arrangements which have been
so far exploited to realize high quality dielectric waveg-
uides and cavity resonators [2–4]. In most cases, such
defect modes have been investigated within the context
of Hermitian systems. Yet, much less is known about the
physics and properties of defects in non-Hermitian peri-
odic configurations where the vector space is no longer
orthogonal but is instead skewed. In the optical domain,
non-hermiticity can be readily introduced through either
amplification or loss. Such arrangements include for ex-
ample defect mode lasers in photonic band-gap crystals
[5], photonic crystal fiber amplifiers [6] and semiconduc-
tor distributed-feedback lasers [7]. The spectrum of these
latter systems is in general complex, allowing only some
of the modes to enjoy amplification.

Lately, the notion of parity-time (PT ) symmetry has
been introduced in optics as a new paradigm to mold the
flow of light [8, 9]. This idea, which originated within
the context of quantum field theories [10, 11], has led
to new strategies in achieving a harmonic interplay be-
tween optical gain and loss. In general, a necessary (but
not sufficient) condition for an optical structure to be
PT -symmetric is that its complex refractive index dis-
tribution satisfies the condition n(x) = n∗(−x), in which
case the real part of the index profile is expected to
be symmetric in space while the imaginary component
(gain-loss) is antisymmetric. Optical systems endowed
with this symmetry are known to exhibit altogether real
spectra. PT symmetry can lead to unusual and pre-
viously unattainable light propagation features [9, 12–

24]. These include double refraction and band merging
[8, 12], abrupt phase transitions and power oscillations
[16, 17], unidirectional invisiblity [23] and non-reciprocal
propagation [19], as well as coexistence of coherent lasing-
absorbing modes and mode selection in PT -symmetric
lasers [9, 20, 21]. Quite recently, light transport in large-
scale temporal PT -symmetric mesh lattices has been re-
ported [12, 13]. Given that the band structure of a PT -
symmetric lattice can be entirely real, one could ask in
what fundamental ways the properties of a defect state
will be altered in such a pseudo-Hermitian environment.

In this Letter, we report the first experimental observa-
tion of defect states in PT -symmetric lattices [Fig. 1(a)].
We demonstrate the transition from stable to exponen-
tially growing bound modes while their localization prop-
erties remain preserved. Furthermore, we show that for
a defect state in its broken symmetry regime, the corre-
sponding eigenvalue does not necessarily have to reside
within the band gap region—as in conventional Hermi-
tian periodic structures. Finally, at PT threshold, we
observe a stable parity-time symmetric defect mode that
constantly emits coherent radiation to the surrounding
lattice at a linear growth rate.

The experimental setup in Fig. 1(b) [12, 25, 26] con-
sists of two loops of optical fiber which are connected by
a 50:50 coupler. A length difference of ∆L between the
loops enables a temporal advancement or delay of the
light pulses in every round trip [26, 27]. The required
refractive index distribution in this arrangement is real-
ized using a phase modulator in one of the loops. Ad-
ditionally, the antisymmetric imaginary part of the pho-
tonic potential is implemented by temporally switching
gain and loss between the two loops. A comprehensive
technical documentation is provided in the Supplemen-
tal Material [25]. One can show that the resulting pulse
dynamics in this system is governed by the following dif-
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FIG. 1. (Color online). (a) Equivalent spatial waveguide mesh
lattice corresponding to the temporal fiber loop scheme used
in the experiments shown in (b). Red and blue waveguides
indicate balanced regions of gain and loss while transverse
50% coupling takes place where waveguides come close. A
pair of waveguides with a different gain-loss contrast and/or
phase shift acts as a defect. (b) Coupled fiber loops used in
the experiment. PM:phase modulator.

ference equations [12, 26]:
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Here, um
n and vm

n are the amplitudes of light pulses circu-
lating in the short and long loop, respectively. m corre-
sponds to the number of round trips and n accounts for
the transverse temporal position of a pulse. As indicated
in Ref. [25], Eqs. (1) can be transformed into standard
form associated with mesh lattices [13].

The phase potential ϕ̃(n) = ϕ̃p(n)+ϕ̃d(n) consists of a

periodic part ϕ̃p =

{
+ϕp for mod (n, 4) = 0, 1
−ϕp for mod (n, 4) = 2, 3

, and the

phase defect ϕ̃d(n) which takes the value ϕd for n within
the defect and is 0 elsewhere.

In our setup, from one round trip to another, gain
and loss alternate between the loops. In general, the
gain factor G̃(n) = Gp + G̃d(n) itself can depend on n:

G̃d(n) takes the value Gd for n inside the defect and is 0
everywhere else, thus creating a defect in the imaginary
part of the effective potential. In the experiment, the
same transverse profiles for the gain and phase potential
are used for every loop round trip m.

Before introducing defects in a PT -symmetric optical
mesh lattice, we first investigate the corresponding pas-
sive Hermitian system [28]. Consider an elemental phase
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FIG. 2. (Color online). Phase defect in a passive mesh lattice.
(a) The band structure of the empty lattice (Gp = 1, ϕp = 0)
relates the transverse wave number Q and the propagation
constant θ. The yellow regions denote band gaps [13]. (b)
Dispersion curves of the defect modes as a function of the
defect phase ϕd. Experimental results for the evolution of a
single pulse in this lattice with a phase defect of strength ϕd

where (c) ϕd = 0 (no defect), (d) ϕd = 0.3π, (e) ϕd = π. The
total phase potential ϕ̃(n) is also indicated for each case. In
all cases only data from the short loop (um

n ) is displayed [25].

defect ϕd at positions n = {0, 1} in a passive environ-
ment (Gp = 1) where no background potential is present
(ϕp = 0). In the absence of a defect, the band struc-
ture [13] has two connected bands, with the photonic
band gaps positioned above and below [Fig. 2(a)] in its
reduced Brillouin zone. This can be obtained via a plane
wave ansatz of the form eiQn/4eiθm/2, where Q and θ rep-
resent the transverse Bloch momentum and propagation
constants respectively. Such calculations are explained in
detail in Refs. [13, 25]. The propagation of light pulses in
this configuration is classically analogous [26] to a quan-
tum walk [27–30], as can be seen in Fig. 2(c). Depending
on the defect phase ϕd, either one or two localized modes
can exist inside the band gap [Fig. 2(b)]. In our exper-
iment, we inject a single pulse into the long loop which
is then monitored during propagation. A convolution of
this delta-like impulse with the localized defect states as
well as any continuum modes within the bands deter-
mines the weights of mode excitation. In the Hermitian
system, the strength of each mode remains invariant dur-
ing propagation. As defect modes are indeed excited, we
observe a clear localization of light along the phase de-
fect [Figs. 2(d,e)]. For ϕd = π, an oscillatory intensity
pattern reveals the presence of two defect modes which
continuously interfere with each other. The period of
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this beating in Fig. 2(e) is close to 10 steps in m, which
is compatible with the difference between the two asso-
ciated propagation constants ∆θd ≈ 0.4π = 2

10 2π.

A more complex behavior arises when the same defect
is introduced into a PT -symmetric mesh lattice having a
balanced optical gain-loss profile (Gp = 1.3) and a pe-
riodic phase (refractive index) potential (ϕp = 0.2π).
Given that the periodic lattice parameters Gp and ϕp

were chosen to be below the PT threshold of this lattice
(ln (Gp) < cosh−1

[
2 cos (ϕp) −

√
cos (2ϕp)

]
) [12, 13], in

the absence of a defect, the band structure of this non-
Hermitian system is entirely real [Fig. 3(a,c)]. In this
manner none of the Floquet-Bloch modes can grow ex-
ponentially. In what follows, we will only consider defects
that satisfy the PT condition of n(x) = n∗(−x) in the
entire system (lattice plus defect).

We now introduce a similar phase defect into a PT
lattice while the imaginary part of the combined PT po-
tential remains completely periodic. As predicted by our
theoretical results, [Fig. 3(b)], a transition between al-
most stable localized modes with real propagation con-
stants and exponentially growing bound states with com-
plex eigenvalues is possible, which is in fact observed
[Fig. 3(d,e)] in our experiments. Indeed, in the latter
case, a pair of defect modes with broken PT symmetry
(complex eigenvalues) emerges. Remarkably, this tran-
sition happens when increasing the defect potential ϕd

while the gain-loss Gp and background potential ϕp are
kept constant, see Fig. 3(a). This is counterintuitive
given that for a homogeneous lattice, such an increase
in the optical potential’s real part typically leads to sta-
bilization [12].

Thus far, the propagation constants θd of the bound
defect modes were all found to lie within the band gap of
the periodic structure, thus prohibiting any coupling to
phase-matched free propagating radiation modes. Note
that the only way bound states can exist inside the con-
tinuum of bands (in Hermitian systems) is when they
are totally decoupled from their surroundings by virtue
of some special symmetry [32, 33].

As we will see, in stark contrast to Hermitian systems,
in the case of PT lattices defect states with complex
eigenvalues can also appear within the band continuum.
If a defect possesses an imaginary Gd component (in ad-
dition to the real part ϕd) which differs from the peri-
odic gain-loss Gp profile, then it is possible to establish
localized modes having propagation constants whose real
parts Re(θd) are located inside the bands. In this regime,
the inherent gain of the system compensates for light
leaking away (because of phase-matching) into lattice ra-
diation modes. These defect modes have a non-zero imag-
inary part Im(θd) that reveals itself through exponential
growth or decay. Despite the fact that their coupling to
the continuum is not inhibited, these PT localized states
still decay exponentially on both sides. Essentially, this
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FIG. 3. (Color online). Phase defect in a PT -synthetic lat-
tice. (a) Real band structure of the background PT lattice
(below treshold) with a gain-loss Gp = 1.3 and a phase po-
tential ϕp = 0.2π. (b) Dispersion diagram of defect states as
a function of defect phase ϕd. Here, real and imaginary parts
are shown in blue and red respectively. (c) Measurement of
single pulse evolution when ϕd = 0 (no defect) and for (d)
ϕd = 0.3π. In this last case, bound modes with real propa-
gation constants θd are observed. (e) Increasing ϕd to 0.6π

brings a pair of bound modes above the PT threshold. The
real (ϕ̃(n)) and imaginary (G̃(n)) parts of the PT potentials
as well as the evolution of the total power are indicated.

exponential localization is a direct outcome of the expo-
nential increase a defect mode experiences in time.

In order to observe such defect states in optical mesh
lattices, we introduce a broad PT -symmetric defect in
a background empty lattice (Gp = 1 and ϕp = 0). The
defect region extends over 14 discrete positions n and
possesses a gain-loss contrast of Gd = 1.3 and a defect
phase of ϕd = 0.2π, see Ref. [25]. This extended de-
fect allows one to observe these effects at experimentally
attainable gain-loss values. According to the dispersion
diagram of Fig. 4(a), this lattice can in general support
several defect modes. In the range of 0 < |ϕd| < 0.5π, a
pair of defect states with complex conjugate eigenvalues
(one growing while the other one decaying) is found to ex-
ist in spite of the fact that their corresponding real part
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FIG. 4. (Color online). Defect modes residing in the con-
tinuum. (a) Dispersion diagram of a broad PT -symmetric
defect when embedded into an empty lattice. Apart from sev-
eral other defect modes having real eigenvalues and located
in the band gap (yellow region), for ϕd < 0.5π this structure
also supports a pair of localized modes with complex θd, that
lie inside the continuum. (b) Pulse intensity profiles after
m = 70 steps of propagation. (c) Observation of a growing
weakly localized mode in the continuum for ϕd = 0.2π. (d)
Increasing ϕd to 0.8π brings the mode into the band gap,
leading to strong localization.

resides inside the band continuum. In our experiment,
by choosing ϕd = 0.2π we clearly observe this weakly lo-
calized exponentially growing defect state [Figs. 4(b,c)].
When increasing the defect’s real potential ϕd to 0.8π,
this pair of complex defect eigenmodes migrates into the
band gap thus becoming tightly bound to the defect site
[Fig. 4(d)] while it still grows/decays exponentially.

Even more surprising is how in this same structure, the
gain-loss coefficient Gd ultimately affects the properties
of these complex defect states. According to Fig. 5(a),
when Gd decreases (for ϕd = 0.2π), the defect eigenvalue
spectrum becomes again real and hence the total energy
in the lattice remains bounded. However, right at the
transition threshold which corresponds to Gd = 1.25, the
mode is no longer exponentially localized and the total
light power in the lattice now grows linearly while the rest
of the defect eigenvalues are still real [Fig. 5(b)]. In this
case, the pulse intensity within the active defect region
oscillates around a stable mean value, while the struc-
ture constantly emits optical power toward both sides,
see Figs. 5(c,d). This can be understood from Fig. 5(a)
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FIG. 5. (Color online). A defect mode at its exceptional point
(EP). (a) Dispersion diagram of defect modes existing in the
same structure as in Fig. 4 with ϕd = 0.2π and as a function of
Gd. According to this plot PT threshold occurs at Gd ≈ 1.25.
(b) Measured light energy and (c,d) propagation in short and
long loops at Gd ≈ 1.25, confirming an almost linear growth
in total energy and a continuous emission of power.

which clearly indicates the presence of an exceptional
point within the band. Here a transition occurs between
a pair of radiation modes (with real eigenvalues) and two
localized complex modes endowed with a finite norm.
Therefore, it is possible to create a continuously emit-
ting coherent light source within a photonic lattice by
embedding an appropriately designed gain-loss defect, as
demonstrated in our experiment [Fig. 5(c)], which indeed
confirms a linear growth of total light power [Fig. 5(b)].
Note that a similar behavior occurs in active Fabry-Perot
cavities when operated at lasing threshold; in this regime,
when gain is exactly equal to the total loss, power re-
mains constant within the cavity while coherent laser
light constantly flows toward the outside environment,
with the total energy growing linearly [34].

In conclusion, we have investigated, both theoretically
and experimentally, the properties of complex defects in
PT -symmetric optical lattices. We have shown that de-
fect modes in such structures can exhibit extraordinary
characteristics that are by no means attainable in stan-
dard Hermitian systems. Among them is the prospect
of PT -symmetry breaking instabilities and the possibil-
ity of establishing localized complex defect modes with
spectra lying within the band continuum. In such PT -
symmetric environments, not only light beams can be
trapped within a defect, but can also be controlled at
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will through a defect parameter–thus altering the respec-
tive power emission characteristics to the surrounding re-
gions. Our results may lead to new possibilities in judi-
ciously structuring gain and loss in optical lattices that
could in turn be potentially useful in lasing systems and
other optical structures and devices.
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