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Realizing optical-nonlinear effects at a single-photon level is a highly desirable but also extremely
challenging task, because of both fundamental and practical difficulties. We present an avenue to
surmounting these difficulties by exploiting quantum Zeno blockade in nonlinear optical systems.
Considering specifically a lithium-niobate microresonator, we find that a deterministic phase gate
can be realized between single photons with near-unity fidelity. Supported by established techniques
for fabricating and operating such devices, our approach can provide an enabling tool for all-optical
applications in both classical and quantum domains.

PACS numbers: 42.65.Pc, 03.65.Xp, 42.50.Ex

First observed more than half a century ago [1], optical
nonlinear phenomena have since become the foundation
for interdisciplinary applications, such as squeezed light
sources [2], biological microscopy [3], and entanglement
generation [4]. Recently, the quest for information pro-
cessing by all-optical means has fueled new studies of op-
tical phenomena in an extreme quantum regime involving
only a few photons [5, 6]. This requires optical nonlin-
earities that are orders of magnitude higher than those
achievable with existing optical media [7, 8]. Although
this drawback can be overcome by combining strong cav-
ity enhancement with resonant coupling between photons
and (effective) atoms [9, 10], the implementation requires
large setups and operation in near-zero-temperature en-
vironment, making such systems unsuitable for practical
use. In contrast, schemes based on post selection [11] or
feed forward [12] can be implemented with only linear-
optics instruments. Such schemes, however, are inher-
ently probabilistic and thus their use is hard to justify in
large-scale applications.

Highly off-resonant optical nonlinearities, on the other
hand, do not suffer from the aforementioned issues and
are thus potentially viable for photonic information pro-
cessing tasks on a large scale. It was suggested that in-
tense cross-phase modulation (XPM) in Kerr-nonlinear
media could produce a deterministic phase gate between
single photons [13–15] . This idea, unfortunately, was
developed upon an incorrect single-mode argument. By
taking into account the inherent multimode nature of
light propagation in a Kerr medium, it was recently dis-
covered that no useful XPM effect can be produced in
such systems even with an unrealistically giant Kerr non-
linearity [16, 17]. The fundamental reason turns out to
be that causality prohibits XPM phase shift of any non-
negligible amount without significant quantum noise.

It remains an outstanding challenge—not only because
of implementation difficulties but also due to the funda-
mental restrictions—to construct practical nonlinear op-
tical devices suitable for operation at the single photon

level. In this Letter, we propose to surmount this chal-
lenge by exploiting the quantum Zeno effect that occurs
when a slowly-evolving system is probed frequently or
continuously, with the result that the system is “frozen”
in its initial state (i.e., its evolution is slowed down)
[18]. Applying this effect to a nonlinear optical cavity,
quantum Zeno blockade (QZB) can be realized whereby
occupation of a cavity mode “blocks” (more precisely,
suppresses) additional photons from entering the cavity
[19–21]. In effect, the intracavity photon acts as a contin-
uous probe monitoring the in-coupling of additional pho-
tons, thereby preventing them from entering the cavity
through the Zeno effect. QZB is analogous in function-
ality to “photon blockade” that is realized through vac-
uum Rabi splitting [9]. QZB instead occurs through the
Zeno effect, which allows for distinct “interaction-free”
operations that can potentially lead to ultralow-loss and
noise-free devices for all-optical processing [21, 22].

We employ QZB to realize strong, interaction-free non-
linear effects between single photons. Specifically by con-
sidering a χ(2) system of a prism-coupled lithium-niobate
(LN) microdisk resonator, we show that strong XPM ef-
fects can be produced between single photons under real-
izable parameter settings. When the input single photons
are in the form of Gaussian pulses, they become entan-
gled at the output. However, when the input photons are
prepared in exponential waveforms that are time-reversed
replicas of the cavity leakage modes [23], a determinis-
tic phase gate can be realized. This result highlights a
potentially enabling pathway for implementing practical
photonic information processing. Our approach is gener-
ally extendable to a variety of nonlinear optical systems
of traveling-wave or resonator designs.

In Fig. 1, we schematize the operation of our phase
gate. It consists of a LN microdisk cavity evanescently
coupled to a prism. The cavity is designed to be in
resonance with both the pump (control) and the signal
(target), and the disk is quasi phase-matched to support
sum-frequency generation (SFG) between the two. Fig-
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FIG. 1. A schematic of the gate setup with pump OFF (a) and

ON (b). Âs(p) is the annihilation operator for the propagat-
ing signal (pump) field. ĉs(p,f) is the annihilation operator for
the intracavity signal (pump, sum-frequency) field. Dashed
arrows indicate the interaction-free nature of the gate’s oper-
ation.

ure 1(a) shows the pump-OFF case. Through the prism,
the signal field evanescently couples into the disk and
then exits with a π phase shift relative to its input. Fig-
ure 1(b) shows the pump-ON case. The pump field, ap-
plied ahead of the signal, couples in and then out of the
disk with a π phase shift. When the signal photon ar-
rives, the presence of the intracavity pump field and the
large nonlinear coupling strength provide high potential
for SFG. Depending on the lifetime of the sum-frequency
(SF) field in the cavity, gate operation falls into two cat-
egories: incoherent quantum zeno (IQZ) and coherent
quantum zeno (CQZ) [24]. IQZ corresponds to the sys-
tem being monitored by a real detector or an effective
one realized through dissipative coupling to a reservoir
system containing many degrees of freedom [19, 25]. Our
system is in IQZ when the cavity SF field is short lived,
since the SFG process then causes the intracavity signal
field to dissipate, thus mimicking continuous monitoring
of the intracavity signal field [22]. As a result, the signal’s
coupling into the cavity will be suppressed through the
Zeno effect. When the dissipation is strong, the incom-
ing signal will be reflected from the cavity with its phase
unchanged. In contrast, CQZ corresponds to the system
being coupled to a few or just a single degree of freedom
with low loss [20]. Such is the case for our system when
the SF field in the cavity is long lived. The probe for
the intracavity signal field is then realized through its
Rabi coupling with the SF field [24]. In analogy with
Autler-Townes splitting for atomic transitions [26], the
intracavity pump field creates dressed states for the in-
tracavity signal and SF fields shifting their resonant fre-
quencies. Therefore, when CQZ is in force, similar to
the IQZ case, the input signal will be reflected without
changing its phase because of the shift in the resonance
frequency. Below we consider the CQZ case in detail; see
the supplementary material for the IQZ case.

The eigenmodes of the microdisk cavity are whisper-
ing gallery modes (WGMs). See details in the supple-
mentary material [27]. For a typical LN microdisk with
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FIG. 2. Υ versus R on a log scale. The plotted curve is
log10 Υ = 0.073(log10 R)2 − 0.77 log10 R + 1.74, which is ob-
tained by least-square fitting.

radius R ≃ 1.5 mm and Qi > 107 [28], the resonance
linewidth is much smaller than the cavity’s free-spectral
range. It is thus valid to consider only a single cavity
mode being excited by the corresponding applied external
quasimonochromatic field. We then denote the cavity-
mode annihilation operators as ĉµ with µ ∈ {s, p, f} rep-
resenting the signal, pump, and SF fields, respectively.
They satisfy [ĉµ, ĉ

†
µ′ ] = δµµ′ and [ĉµ, ĉµ′ ] = 0. The cor-

responding external propogating-field annihilation oper-
ators are denoted by Âµ, which satisfy [Âµ(z), Â

†
µ′(z′)] =

δµµ′δ(z − z′) and [Âµ(z), Âµ′(z′)] = 0.

To capture the temporal behavior of pulsed optical
signals, a temporally multimode quantum description is
needed. We consider an effective real-space Hamiltonian
specific to our gate system, as follows [29]:

Ĥ =
∑

µ=s,p,f

[

~ωµĉ
†
µĉµ +

∫

dz Â†
µ(z)~(ωµ − ivg

∂

∂z
)Âµ(z)

+ ~

√

vg
ωµ

Qc
µ

∫

dz δ(z)(Â†
µ(z)ĉµ + Âµ(z)ĉ

†
µ)

]

+ ~

(

Υĉsĉpĉ
†
f +Υ∗ĉ†s ĉ

†
pĉf

)

,

(1)
where ωµ is the carrier frequency of the field Âµ and vg
is the group velocity which is assumed to be the same for
all the pulsed fields. Since the carrier-frequency terms
in Eq. (1) do not influence the gate’s dynamics, we ig-
nore terms containing ~ωµ for simplicity. The third term
in Eq. (1) describes the coupling between the external
propagating fields and the cavity fields, where the cou-
pling quality factor Qc

µ places a bandwidth limit on the
input pulses that can be properly coupled-in without dis-
tortion. The last two terms in Eq. (1) describe the in-
tracavity SFG process, where Υ is the nonlinear coupling
coefficient. In Fig. 2 we plot Υ as a function of R calcu-
lated using analytical WGM profiles (see supplementary
material [27] for details), where Υ = 140 and 337 MHz
are shown to be obtained for R ≈ 50 and 20µm, re-
spectively. Such large Υ values are potentially realizable
because high-quality LN microdisks with R as small as
40µm have been fabricated via manual polishing tech-
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niques [30]. Even smaller disks are expected to be fabri-
cated in the near future by adopting advanced automated
machining and polishing.

In arriving at Eq. (1), we have assumed Qc
µ ≪ Qi

µ

and thus have neglected terms that describe decay of the
WGMs. Qi

µ is fundamentally limited by bending loss and
light absorption within the disk. Because LN’s large re-
fractive index, the bending loss allows for Qi

µ > 1014 for
disks with R > 15µm [31, 32]. On the other hand, the
absorption loss in commercially-available LN crystals is
usually ∼ 10−4/cm or higher, which imposes a high limit
of Qi

µ ∼ 108, as typically demonstrated [33]. By custom
doping LN crystals, however, ultralow absorption loss
(. 10−5 cm−1, bounded by measurement precision) has
been demonstrated over a wide spectral range (800–2000
nm) [34]. Using such crystals, microdisks with Qi

µ & 109

can be fabricated. Note that in practice Qi
µ can also

be limited by roughness of the disk’s surface. This ef-
fect, however, was not found to be significant, even for a
manually-polished disk with R = 40µm [30]. Based upon
the above analysis, we will take Qi

µ = 109, for which de-
cay of the WGMs can be ignored when Qc

µ . 108. For
the setup depicted in Fig. 1, the latter conditions can be
realized by adjusting the distance between the disk and
the prism.

In our gate system, the joint quantum state of
the signal, the pump, and the SF photons can be
written in its most general form as: |Ψ(t)〉 =
[

∫∫

dzdz′φsp(z, z
′, t)Â†

s(z)Â
†
p(z

′) +
∫

dz φf(z, t)Â
†
f (z) +

∫

dz φs(z, t)Â
†
s(z)ĉ

†
p +

∫

dz φp(z, t)Â
†
p(z)ĉ

†
s + esp(t)ĉ

†
s ĉ

†
p +

ef(t)ĉ
†
f

]

|0〉, where |0〉 is the vacuum state. The first term

represents the state in which both the signal and the
pump photons are in external traveling-wave modes with
φsp(z, z

′, t) as their joint wavefunction. Similarly, in the
second term φf(z, t) is the wavefunction for the exter-
nal SF field. The third and fourth terms, in contrast,
represent quantum states with one photon in the prop-
agating mode and one in the cavity mode with φs (φp)
as the product of the signal (pump) wave function and
the cavity excitation amplitude for the pump (signal).
Finally, ef (esp) is the SF (product of signal and pump)
cavity-excitation amplitude(s).

Plugging the Hamiltonian of Eq. (1) and the quantum
state |Ψ(t)〉 into the Schrödinger equation, the following
partial differential equations can be derived:

∂tφf = −vg∂zφf − iΩfδ(z)ef , (2a)

∂tφsp = −vg(∂z + ∂z′)φsp − i
∑

ν

ΩνΛν′ , (2b)

∂tφν = −vg∂zφν − iΩνδ(z)esp − iΩν′Γ0ν , (2c)

∂tesp = −i
∑

ν

Ωνφν(0)− iΥ∗ef , (2d)

∂tef = −iΩfφf(0)− iΥspesp, (2e)
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FIG. 3. Gate performance with Gaussian pump and signal
pulses. (a) Signal input and the first two Schmidt eigen-
modes for the signal output. (b) Pump input and the first
two Schmidt eigenmodes for the pump output.

where Ωµ = (vgωµ/Q
c
µ)

1/2 and ν, ν′ ∈ {s, p}, ν 6= ν′.
In Eq. (2b), Λs = δ(z′)φs(z, t) and Λp = δ(z)φp(z

′, t).
In Eq. (2c), Γ0s = φsp(z, 0, t) and Γ0p = φsp(0, z

′, t).
In Eq. (2), the output joint wavefunction for the signal
and pump photons can be decomposed as φsp(z, z

′, t) =
∑∞

n=1 anψsn(z, t)ψpn(z
′, t) (z, z′ > 0), where ψsn and ψpn

are paired mode-functions for the Schmidt modes of the
output signal and pump photons, respectively, with de-
composition coefficients an that are ordered such that
a1 > a2 > · · · ≥ 0. The corresponding two-photon
output state can then be written in the time domain as
|Ψout〉 =

∑∞

n=1 an|nn〉, where |nn〉 = v2g
∫∫

dt dt′ψsn(z →
0+, t)ψpn(z → 0+, t′)Â†

s(vgt)Â
†
p(vgt

′)|0〉 is the nth

Schmidt-mode basis state. A near-unity a21 together with
a large overlap between the first Schmidt mode-function
of the output signal photon and its input ψs, as quanti-

fied by the fidelity
∣

∣

∫

dt ψs(t)ψ
∗
s1(z → 0+, t)

∣

∣

2
, then sig-

nify high-performance switching when the pump is on.

To examine the gate performance, we first consider
Qc

s,p,f = 108, Υ = 610 MHz, and two 500 ns (FWHM)
Gaussian signal and pump pulses with a separation of
60 ns. The simulation results are shown in Fig. 3,
where the output photons turn out to be in an entan-
gled two-photon state with a1 = 0.77, a2 = 0.52, a3
= 0.25, and an>3 ≃ 0. This result points to a viable
approach for on-demand generation of time-bin entan-
glement (i.e., photons entangled in the temporal degree
of freedom [35]) using two initially uncorrelated pho-
tons. Such photons, unlike their polarization entangled
cousins, are better suited for applications in standard
telecommunication fibers [35, 36] because of their insensi-
tivity to polarization-mode decoherence occurring in such
fibers.

The physics underlying the above behavior is in
some way similar to what was found during the study
of single-photon cross-phase modulation in the fast-
response regime [16]. In a nutshell, it is because the
QZB is effective only if the pump photon is in the cav-
ity. Therefore, the phase of the signal photon can be
switched only when it arrives within the cavity lifetime
of the pump photon. In the above example, the cavity
lifetime is about 100 ns for both the signal and pump pho-
tons, which is five times smaller than their pulse widths.
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FIG. 4. CQZ gate performance with the proposed pulse
shapes. Input (output) is defined as the pulse after it has
evolved the same period of time without (with) passing the
gate. The temporal reference points are the same in all the
plots. (a) Pump OFF: the signal output is phase shifted by π

and temporally reversed. (b) Pump ON: The output signal is
well preserved. (c) Signal OFF: the pump behaves the same
as the signal in the pump-OFF case. (d) Signal ON: the pump
behaves as if there is no signal photon.

As a result, depending on the temporal location of the
pump photon within its pulse duration, the output sig-
nal photon will be in a superposition of phase changed
and unchanged sates. Because of the quantum uncer-
tainty inherent in the pump-photon location, the two
photons therefore exit the cavity in an entangled state.
This phenomenon can be intuitively understood by con-
sidering a toy model in which the pump and the sig-
nal photons are initially in states (|t0〉p + |t1〉p)/

√
2 and

(|t0 + ∆〉s + |t1 + ∆〉s)/
√
2, respectively, where {|t〉p(s)}

are orthonormal time modes centered at t for the pump
(signal). The times t1 and ∆ are chosen such that the
signal photon in |t0(1) + ∆〉s arrives at the cavity when
the pump photon in |t0(1)〉p has already coupled into the
cavity, but the photon in |t1(0)〉p has not (exited). Under
this condition, the output pump and signal photons in
the presence of an ideal QZB effect will be in an entan-
gled state of

(

|t0〉p|t1 + ∆〉s + |t1〉p|t0 +∆〉s − |t0〉p|t0 +
∆〉s − |t1〉p|t1 +∆〉s

)

/2.

The above example creates entanglement deterministi-
cally between the signal and the pump photons. In order
to implement the phase gate, however, it is necessary to
ensure that these photons do not entangle at the cav-
ity output. To this end, we propose to use photons in
exponentially rising pulses whose temporal shapes repli-
cate the “time reversed” cavity leakage modes [23]. This
allows the entire pulse of the pump photon to be in the
cavity when the signal photon arrives, so that the latter’s
phase is switched with certainty. Using such photons, we
next simulate the switching dynamics in the CQZ case,
taking Qc

p,f = 108, Qc
s = 107, and assuming all other pa-

rameters to be the same as in the Gaussian-pulse case
considered above. The smaller Qc

s results in a narrower
signal pulse, which allows us to arrange the temporal de-
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FIG. 5. Single-photon gate performance vs. nonlinear cou-
pling strength Υ. Both the fidelity (a) and the probability
of occupying the first Schmidt eigenmode (b) saturate as Υ
increases.

lay of the signal photon relative to the pump to be such
that it passes through the cavity when almost the entire
pump pulse is already in the cavity. The simulation re-
sults are shown in Fig. 4, where plot 4(a) shows the signal
input and output with the pump OFF. Except for the π
phase shift, the temporal profile of the signal output is re-
versed indicating that the signal photon coupled into the
cavity and then out. Figure 4(b) shows the signal input
and the first Schmidt eigenfunction of the gate output
with the pump ON. This first eigenfunction matches the
input pulse shape very well and the fidelity reaches 0.99.
The probability for the output signal photon to occupy
this eigenmode is 0.98. Figure 4(c) shows the pump input
and output with the signal OFF. The pulse evolution is
similar to the signal’s in the pump-OFF case. Figure 4(d)
plots the pump input and the first Schmidt eigenfunction
of the output with the signal ON. As shown, the pump
photon couples into disk and then exits as if the signal
photon did not exist. Both Figs. 4(a) and 4(c) show that
the pulses start to leak out only after they have been
entirely coupled in.
We further investigate the gate performance with

larger disk sizes, which lead to a range of smaller Υ values
(cf. Fig. 2). Both the fidelity and the probability of oc-
cupying the first Schmidt eigenmode are calculated and
plotted in Fig. 5. Both plots show a saturation feature
as Υ increases. This feature points to the feasibility of
future experiments. As long as the disk radius is smaller
than 25µm, good single-photon switching performance
can be expected.
In summary, we have proposed the use of the quantum

Zeno blockade to achieve a large effective nonlinearity
at the single-photon level. By performing a multimode
analysis and considering realistically achievable parame-
ters, we have shown that a deterministic phase gate can
be implemented between single photons with near-ideal
fidelity.
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[14] M. D. Lukin and A. Imamoğlu, Phys. Rev. Lett. 84, 1419
(2000).

[15] Z.-B. Wang, K.-P. Marzlin, and B. C. Sanders, Phys.

Rev. Lett. 97, 063901 (2006).
[16] J. H. Shapiro, Phys. Rev. A 73, 062305 (2006).
[17] J. Gea-Banacloche, Phys. Rev. A 81, 043823 (2010).
[18] B. Misra and E. C. G. Sudarshan, Journal of Mathemat-

ical Physics 18, 756 (1977).
[19] Y.-P. Huang and P. Kumar, Phys. Rev. Lett. 108, 030502

(2012).
[20] Y. Huang and P. Kumar, Opt. Lett. 35, 2376 (2010).
[21] Y.-P. Huang and P. Kumar, Selected Topics in Quantum

Electronics, IEEE Journal of 18, 600 (2012).
[22] Y. P. Huang and M. G. Moore, Phys. Rev. A 77, 062332

(2008).
[23] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi,

Phys. Rev. Lett. 78, 3221 (1997).
[24] Y.-P. Huang, J. B. Altepeter, and P. Kumar, Phys. Rev.

A 82, 063826 (2010).
[25] J. D. Franson, B. C. Jacobs, and T. B. Pittman, Phys.

Rev. A 70, 062302 (2004).
[26] S. H. Autler and C. H. Townes, Phys. Rev. 100, 703

(1955).
[27] Supplementary material: 1. Whispering Gallery Modes;

2. Calculation for Υ and the Data Plotted in Fig. 2; 3.

IQZ Case Analysis.
[28] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and

L. Maleki, Phys. Rev. Lett. 92, 043903 (2004).
[29] J.-T. Shen and S. Fan, Phys. Rev. A 79, 023838 (2009).
[30] Private communications with D. V. Strekalov.
[31] J. E. Heebner, T. C. Bond, and J. S. Kallman, Opt.

Express 15, 4452 (2007).
[32] S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W.

Goh, E. Wilcut, and H. J. Kimble, Phys. Rev. A 71,
013817 (2005).

[33] J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L.
Andersen, C. Marquardt, and G. Leuchs, Phys. Rev.
Lett. 105, 263904 (2010).

[34] J. Schwesyg, Interaction of light with impurities in

lithium niobate crystals, Ph.D. thesis, Rheinischen
Friedrich-Wilhelms-Universität Bonn (2011).

[35] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden
and N. Gisin, Nature 421, 509 (2003)

[36] W. Tittle, J. Brendel, H. Zbinden, and N. Gisin, Phys.
Rev. Lett. 84, 4737 (2000)


