
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Investigating Polaron Transitions with Polar Molecules
Felipe Herrera, Kirk W. Madison, Roman V. Krems, and Mona Berciu

Phys. Rev. Lett. 110, 223002 — Published 29 May 2013
DOI: 10.1103/PhysRevLett.110.223002

http://dx.doi.org/10.1103/PhysRevLett.110.223002


Investigating polaron transitions with polar molecules

Felipe Herrera,1, 2, 3 Kirk W. Madison,4 Roman V. Krems,1 and Mona Berciu4

1Department of Chemistry, University of British Columbia, Vancouver, B.C., V6T 1Z1, Canada
2Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA

3Department of Chemistry and Chemical Biology,
Harvard University, 12 Oxford St., Cambridge, MA 02138, USA

4Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C., V6T 1Z1, Canada
(Dated: March 25, 2013)

We determine the phase diagram of a polaron model with mixed breathing-mode and Su-Schrieffer-
Heeger couplings and show that it has two sharp transitions, in contrast to pure models which
exhibit one (for Su-Schrieffer-Heeger coupling) or no (for breathing-mode coupling) transition. We
then show that ultracold molecules trapped in optical lattices can be used as a quantum simulator
to study precisely this mixed Hamiltonian, and that the relative contributions of the two couplings
can be tuned with external electric fields. The parameters of current experiments place them in
the region where one of the transitions occurs. We also propose a scheme to measure the polaron
dispersion using stimulated Raman spectroscopy.

PACS numbers: 34.50.Cx, 67.85.-d, 37.10.Gh, 37.10.De, 34.20.Cf, 52.55.Jd, 52.55.Lf, 37.10.Jk

Introduction: Polarons – the low-energy quasiparticles
in the spectra of particles coupled to bosons – have been
of broad interest in physics ever since Landau’s first study
[1]. There are two mechanisms for particle-boson cou-
pling since bosons can change (i) the potential or (ii)
the kinetic energy of the particle. For example, consider
electron-phonon coupling. Vibrations of nearby atoms
modulate the potential energy of an electron. Well-
known examples of such type (i) interactions are the Hol-
stein molecular crystal model [2] and the breathing-mode
(BM) coupling relevant in cuprates [3]. At the same time,
by modulating the distance between sites, phonons also
affect the hopping integrals. Such effects are described
by type (ii) models like the Su-Schrieffer-Heeger (SSH) or
Peierls coupling, introduced for the study of conjugated
polymers, eg. polyacetylene [4]. Many other examples of
type (i) couplings (these are independent of the particle’s
momentum) and type (ii) couplings (these depend explic-
itly on the particle’s momentum) appear in the study of
carriers coupled to magnons and orbitons [5].

While both types of couplings are generally present,
most early studies focused on type (i) models, in partic-
ular on the search for a self-trapping transition where the
bosons create a potential well so deep that it traps the
polaron. Type (i) models were shown to not exhibit such
a transition [6], instead there is a smooth crossover from
light, highly mobile polarons at weak coupling to heavy,
small polarons at strong coupling. This standard view
of the polaron as a quasiparticle that becomes heavier
with increased coupling is now strongly challenged by re-
sults for type (ii) models. Recent work has shown that
in such models the polaron can be lighter than the bare
particle, since the bosons affect the particle’s hopping
so it may move more easily [7–9]. The boson-mediated
dispersion is different from that of the bare particle and
may favor a ground state with a different momentum
[8]. If this happens, a sharp transition occurs when the
boson-mediated contribution to the dispersion becomes

dominant, as shown for the SSH polaron [9–11].

The different behaviour of type (i) and type (ii) po-
larons raises questions such as what is the behaviour in
systems (cuprates [3], organic semiconductors [12]) where
both types of couplings are important? What happens
to the sharp transition in a mixed model if the coupling
is varied smoothly from type (ii) to type (i)? This also
makes it very desirable to find systems described by such
mixed models but where, unlike in solid-state systems, all
parameters can be tuned continuously. Quantum simu-
lators using laser trapped atoms or molecules are partic-
ularly suited for this task. Interactions between particles
at sub-mK temperatures can be tuned using laser fields
to implement conditions that resemble those found in
condensed matter [13]. Quantum simulators for type (i)
lattice polarons have been proposed using atom-molecule
systems [14], self-assembled crystals in strong DC fields
[15], trapped ions [16] and Rydberg atoms [17]. The lat-
ter is also predicted to realize type (ii) couplings in the
weak particle-boson interaction regime [18].

In this Letter we elucidate the polaron behavior as the
coupling varies between type (ii) SSH and type (i) BM
[19]. Surprisingly, we find that there are two sharp tran-
sitions, and that these occur even when the type (i) cou-
pling is dominant. This shows that the polaron physics
is much richer than generally assumed, and that type (ii)
couplings may need to be included even for systems where
they are usually neglected. We then show that this mixed
Hamiltonian describes polar molecules trapped in an op-
tical lattice, and moreover, that the parameters of cur-
rent experiments place them in the region where a transi-
tion is expected to occur. Thus, experimental confirma-
tion of such transitions is within reach. Furthermore, we
propose a detection scheme equivalent to Angle-Resolved
Photoemission Spectroscopy (ARPES) in solid-state sys-
tems [20] which directly measures the polaron dispersion
and can pinpoint the transition.

Model: The generic single polaron Hamiltonian for a
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FIG. 1: (color online). Phase diagram λ vs. A at fixed R.
Symbols show the location of the transition if R = 0 (blue
circles) and R = −0.5 (red circles). The three shaded re-
gions represent molecules with large (a, LiCs), intermediate
(b, RbCs) and small (c, KRb) dipoles, and dressing schemes 1
(R = −0.5 for a) and 2 (R = 0 for b and c), respectively. For
each region, the three lines correspond to lattice constants of
256 nm (lower bound), 532 nm (dashed line) and 775 nm (up-
per bound, not shown for region (c) because it is off-scale).
For each curve ~Ω varies between 1 and 100 kHz.

one-dimensional chain with N sites is:

H =
∑
k

εkc
†
kck+

∑
q

~Ωqb
†
qbq+

∑
k,q

gk,qc
†
k+qck

(
b†−q + bq

)
.

(1)
Here, ck and bq are annihilation operators for a par-
ticle with momentum k and a boson with momentum
q, respectively. We assume a free particle dispersion
εk = +2t cos(k) with t > 0 [21] and Einstein bosons with
Ωq = Ω. The mixed SSH-BM coupling is given by:

gk,q =
2i√
N
{α [sin(k + q)− sin(k)] + β sin(q)} . (2)

The (k, q)-dependent part, with energy scale α, describes
the type (ii) SSH coupling [9] while the k-independent
part, with energy scale β, describes the type (i) BM cou-
pling [19]. Following Ref. [9], we define the effective SSH
coupling strength λ = 2α2/(t~Ω) and the adiabaticity
ratio A = ~Ω/t. In addition, we use R ≡ β/α to charac-
terize the relative strength of the two couplings.

The SSH polaron (R = 0) was predicted to undergo a
sharp transition at a value λ∗ [9]. Its physical origin is
simple to understand in the anti-adiabatic limit A � 1
where the SSH coupling leads to an effective next-nearest
neighbor hopping i↔ i+ 2 of the particle, by first creat-
ing and then removing a boson at site i+1 [9]. Its ampli-
tude is t2 = −α2/(~Ω) = −λt/2 < 0, so its contribution
−2t2 cos(2k) to the total dispersion has a minimum at
π/2, unlike the bare dispersion which has a minimum at
π. If 4|t2| = t, corresponding to λ∗ = 1

2 in the limit
of A � 1, a sharp transition marks the switch from a
non-degenerate ground state with momentum kgs = π
(for λ < λ∗) to a doubly-degenerate one with |kgs| → π

2
(for λ > λ∗). As A decreases the number of phonons in
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FIG. 2: (color online). Phase diagram λ vs. R at fixed A,
showing two sharp transitions: one from a non-degenerate
ground state with kgs = π to a doubly-degenerate ground
state with 0 < |kgs| < π, and the second back to a non-
degenerate ground state with kgs = 0. The results are for
A = ~Ω/t→∞ (red lines) and for A = 5 (blue circles).

the polaron cloud increases. This renormalizes both hop-
pings t→ t∗, t2 → t∗2, so λ∗ changes smoothly with A as
shown by the blue circles in Fig. 1 (see also Fig. 4 of Ref.
[9]). We also plot λ∗ for R = −0.5 (red circles), showing
that the sharp polaron transition persists for coexisting
type (i) and type (ii) couplings. These results were gener-
ated with the Momentum Average (MA) approximation,
specifically its variational flavor where the polaron cloud
is allowed to extend over any three consecutive sites [8, 9].
For A ≥ 0.3, MA was shown to be very accurate for both
SSH and BM couplings [9, 19].

To understand the evolution of λ∗ with R, consider
again the limit A� 1. In addition to the second-nearest
neighbor hopping t2, there is now also a dynamically gen-
erated nearest-neighbor hopping t1 = 2αβ/(~Ω) = Rλt.
This describes processes where the particle hops from
site i to i + 1 leaving behind a boson at i (SSH cou-
pling) followed by absorption of the boson while the par-
ticle stays at i + 1 (BM coupling); or vice versa, hence
the factor of 2. The total nearest-neighbor hopping is
thus t∗ = t − t1, and the transition now occurs when
4|t2| = t∗ → λ∗ = 1/(2 +R). Thus, for R < 0, the inter-
ference between the SSH and the BM couplings results
in a larger effective t∗ leading to a larger λ∗. In particu-
lar, λ∗ → ∞ for R ≤ −2, i.e. no transition occurs here.
The lack of a transition is not surprising when R→ −∞,
since here the BM coupling is dominant and pure gq mod-
els do not have transitions [6]. Our results show that for
mixed SSH+BM coupling, the switch from having to not
having a transition occurs abruptly at R = −2 if A� 1.
This value must change continuously with A, therefore
we expect this switch to always occur at a finite R.

This is confirmed in Fig. 2, where we plot λ∗ vs. R
for A → ∞ and A = 5. Surprisingly, we find not just
the transition at λ∗ ∼ 1/(R + 2), but also a second one
which marks the crossing to a ground state with kgs = 0.
Its origin is also easy to understand in the anti-adiabatic
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limit: if Rλ > 1, t∗ is negative and favors a ground state
at kgs = 0 instead of kgs = π. For A � 1 this second
transition is at λ∗ = 1/(R − 2) if R > 2. At finite A, it
moves towards smaller (R, λ) values, see Fig. 2.

Interestingly, this shows that for R → +∞ there are
two nearby transitions for the shift kgs = π to kgs =
0. This seems to contradict the proof that a type-(i)
Hamiltonian cannot have transitions [6], however, even
for R → ∞ this is a mixed Hamiltonian if λ 6= 0. The
transition is indeed absent if α = 0. This is an example
of the rare occurrence where a perturbatively small term
has a large effect on the behavior of the system.

Cold molecule implementation: Polar molecules in op-
tical lattices can be used to implement Hamiltonian (1)
in a wide region of the parameter space. Specifically, we
consider molecules prepared in the ro-vibrational ground
state of the spinless electronic state 1Σ and trapped on
an optical lattice in the Mott insulator phase, as recently
demonstrated experimentally [22, 23]. We assume that
there is at most one molecule per lattice site.

The dipole-dipole interaction between molecules in dif-
ferent sites can be modified by applying a DC electric
field E = EDCẑ [15, 24–28]. Here we consider two
schemes for dressing the rotational states of molecules
with electric fields that are relevant for polaron observa-
tion, scheme 1 involving a DC electric field only, and
scheme 2 involving combined optical and DC electric
fields. For the former, we define the two-state subspace
|g〉 = |0̃, 0〉 and |e〉 = |1̃, 0〉, where |Ñ ,MN 〉 denotes the
field-dressed state that correlates adiabatically with the
field-free rotational state |N,MN 〉. N is the rotational
angular momentum and MN is the projection of N along
the electric field vector. In this basis we define the pseu-

dospin operator ĉ†i ≡ |ei〉〈gi| that creates a rotational
excitation at site i. This excitation (the “bare parti-
cle”) can be transferred between molecules in different
lattice sites with an amplitude tij = γ Uij (1− 3 cos2 Θ),
where Uij = d2/|ri − rj |3, d is the permanent dipole
moment, ri is the position of molecule in site i, Θ is
the polar angle of the intermolecular separation vector,
γ = µ2

eg/d
2 ≤ 1 is the dimensionless transition dipole

moment that depends on the strength of the DC electric
field. The excitation hopping amplitude is finite even
for vanishing field strengths. The field-induced dipole-
dipole interaction shifts the energy of the state |ei〉 by
Di =

∑
j Dij . Here Dij = −κUij (1 − 3 cos2 Θ), where

κ = |µg(µe− µg)|/d2 and µg(µe) is the induced dipole of
the ground(excited) state. Dipolar couplings outside this
two-level subspace are suppressed when the electric field
separates state |e〉 from other excited states.

The free quasiparticle dispersion is εk = ε0 + 2t cos(k)
where the site energy is ε0 = ~ωeg +D0, with the single-
molecule rotational excitation energy ~ωeg ∼ 10 GHz and
t ≡ t12. The center-of-mass vibration of molecules in the
optical lattice potential is coupled to their internal rota-
tion through the dependence of Uij on ri − rj . For har-
monic vibrations with linear coupling between internal
and external degrees of freedom [15, 29], the boson term

in Eq. (1) describes lattice phonons whose spectrum de-
pends on the trapping laser intensity and the DC electric
field [29]. Here we consider weak DC fields and moder-
ate trapping frequencies which give a gapped and nearly
dispersionless phonon spectrum with frequency Ω.

With these definitions, the system is described by
SSH and BM-like couplings with the energy scales α =
−3(t12/aL)

√
~/2mΩ and β = −3(D12/aL)

√
~/2mΩ, re-

spectively, where m is the mass of the molecule and
aL is the lattice constant. The ratio R = β/α =
µg(µe − µg)/µ

2
eg is independent of the intensity of the

trapping laser or of the orientation of the array with
respect to the DC field. In the field dressing scheme
1 we have |R| < 1/2 for dEDC/Be ≤ 1. In the com-
bined AC-DC dressing scheme 2, the same DC field
strength and orientation is used as above, but an ad-
ditional two-color Raman coupling redefines the two-
level subspace as |g〉 =

√
a |0̃, 0〉 +

√
1− a |2̃, 0〉 and

|e〉 =
√
b |1̃, 0〉 +

√
1− b |3̃, 0〉 (details in the Supple-

mentary Information). This dressing scheme can be used
to effectively enhance the hopping amplitude by a factor
f > 1 yielding α → fα, without changing the value of
β, nor the phonon dispersion. When using this dressing
scheme, any point in the phase diagram transforms as
λ→ fλ and A→ A/f , thus shifting the system towards
stronger SSH couplings.

The frequency of lattice phonons in a 1D array is
Ω = (2/~)

√
V0ER where V0 is the lattice depth and ER =

~2π2/2ma2L is the recoil energy. The particle-boson
coupling can thus be written as λ = 18(ER/t)(πA)−2.
The shaded regions in Fig. 1 show accessible points in
the polaron phase diagram (λ,A) for LiCs, RbCs and
KRb molecules, illustrating the flexibility in varying the
Hamiltonian parameters when using the two field dress-
ing scenarios and different experimental settings. Figure
1 shows that the transition characterized by the shift
from a non-degenerate ground state kgs = π to a degen-
erate ground state 0 < |kgs| < π can be studied using
molecular species with moderate dipole moments such as
RbCs, in lattices with a site separation aL ≈ 500 nm.
However, the transition is easier to observe for molecules
with large dipole moments such as LiRb and LiCs. For
weakly dipolar molecules such as KRb, the strong cou-
pling region can be achieved using aL < 500 nm.

The most direct way to detect the transition is to
measure the polaron dispersion. We propose the stim-
ulated Raman spectroscopic scheme illustrated in Fig.
3 to achieve this goal. The one-dimensional array is
initially prepared in the absolute ground state |g〉 =
|g1, . . . , gN 〉|{0}〉, where |{0}〉 is the phonon vacuum. We
consider two linearly-polarized laser beams with wavevec-
tors arranged such that k1 − k2 is parallel to the molec-
ular array. If the laser beams are far-detuned from any
vibronic resonance the effective light-matter interaction
operator can be written as V̂ (t) = −gN [ĉ†qe

−iωt + ĉqe
iωt],

where gN is a size-dependent coupling energy propor-
tional to the amplitudes of both laser beams, q = |k1−k2|
and ω = ω1−ω2 are the net momentum and energy trans-
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(a) (b)

FIG. 3: (Color online) (a) A two-photon stimulated Raman
transition creates a polaron state with a well defined momen-
tum q and energy ω = ω1−ω2. (b) The presence of the quasi-
particle is subsequently detected using resonantly-enhanced
multi-photon ionization (REMPI).

ferred from the fields to the molecules. For short interac-
tion times (linear response), the system is excited from
|g〉 into the one-particle sector with a probability propor-
tional to the spectral function A(q, ω) = −Im[G(q, ω)]/π
where G(q, ω) = 〈g|ĉq(~ω − H + iη)−1ĉ†q|g〉 is the one-
particle Green’s function. As a result, for any momen-
tum q the polaron energy Eq equals the energy ~ω of the
lowest-energy peak in A(q, ω), in analogy with ARPES
measurements [20].

To measure A(q, ω), the stimulated Raman excitation
rate can be determined using state selective resonance en-
hanced multi-photon ionization (REMPI), see Fig. 3(b).
With some probability this converts the rotational ex-
citation (the “particle”) into a molecular ion which can
be extracted from the chain and detected by a multi-
channel plate ion detector. Ionization and subsequent
detection efficiencies for a 2 step REMPI processes can
easily exceed 20% [30], and a properly gated integrator

can resolve the arrival of a single molecular ion. Using a
3D lattice, a set of uncoupled parallel 1D arrays can be
realized and excited simultaneously, increasing the signal
to noise ratio of the detection step.

In summary, we have presented the first (to our knowl-
edge) phase diagram for a mixed type polaron Hamilto-
nian [31], which showed that polaron physics is much
richer than previously thought and that sharp transi-
tions may occur even for dominantly type-(i) Hamiltoni-
ans (R� 1). We showed that polar molecules trapped in
optical lattices can be used to study this physics, and pro-
posed an ARPES-like detection scheme to directly mea-
sure the polaron dispersion and thus identify the transi-
tions expected to occur in such systems [9, 11].

Many other aspects of single polaron physics can be
investigated with trapped polar molecules, such as the
effects of dispersive phonons (most theoretical work as-
sumes Einstein bosons), or novel effects resulting from
quadratic particle-boson coupling in the strong coupling
regime, etc. Studying polaron phase diagrams in higher
dimensions is easily achieved with the same experimental
scheme. Generalizations to studies of bi-polarons are also
of significant interest, to understand the pairing mecha-
nism for dominantly type-(ii) models (to date most bi-
polaron studies are for type-(i) models). Finally, one
may also be able to adapt the polar molecules systems
to study finite polaron concentrations. This would al-
low one to look for quantum phase transitions [32] and
to study whether they can also be tuned by varying the
particle-boson coupling.
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