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Neutrinoless double beta decay, if observed, could distinguish whether the neutrino is a Dirac or
a Majorana particle, and it could be used to determine the absolute scale of the neutrino masses.
136Xe is one of the most promising candidates for observing this rare event. However, until recently
there were no positive results for the allowed and less rare two-neutrino double beta decay mode.
The small nuclear matrix element associated with the long half-life represents a challenge for nuclear
structure models used for its calculation. We report a new shell-model analysis of the two-neutrino
double beta decay of 136Xe, which takes into account all relevant nuclear orbitals necessary to fully
describe the associated Gamow-Teller strength. We further use the new model to analyze the main
contributions to the neutrinoless double beta decay matrix element, and show that they are also
diminished.

PACS numbers: 23.40.Bw, 21.60.Cs, 23.40.Hc

Neutrinoless double beta (0νββ) decay can only occur
by violating the conservation of the total lepton num-
ber, and if observed it would unravel physics beyond the
Standard Model (SM) of particle physics and would rep-
resent a major milestone in the study of the fundamental
properties of neutrinos [1]. Recent results from neutrino
oscillation experiments have demonstrated that neutri-
nos have mass and that the neutrino can oscillate from
one flavor to another [2–4]. In addition, they show that
the neutrinoless double beta decay process could be used
to determine the absolute scale of the neutrino masses,
and can distinguish if neutrinos are Dirac or Majorana
particles [5]. A key ingredient for extracting the absolute
neutrino masses from 0νββ decay experiments is a pre-
cise knowledge of the nuclear matrix elements (NME) for
this process. There is a large experimental effort in the
United States and worldwide to investigate the double
beta decay of some even-even nuclei [1]. Experimental
data for two-neutrino double-beta decay (2νββ) to the
ground state (g.s.) and excited states already exist for a
group of nuclei [6]. There are no confirmed experimen-
tal data so far for neutrinoless double-beta decay. The
prediction, analysis and interpretation of experimental
results, present and expected, are very much dependent
on precise nuclear structure calculations of corresponding
transition probabilities.

Although many experimental efforts such as MAJO-
RANA and GERDA [1], are investigating the ββ decay
of 76Ge there are very encouraging results related to the
ββ decay of 136Xe. For a long time there only lower limits
for the 2νββ half-life were available. Recently, the EXO-
200 collaboration reported a precise measurement of this
half life of 2.11±0.04(stat)±0.21(sys)×1021 yr [7, 8], and

a NME of 0.019±0.002 MeV−1 [7, 8] extracted using the
phase-space factor G2ν (see Eq. (1)) from Ref. [10]. This
large half-life would imply a smaller background for the
associated 0νββ measurement and EXO. A larger ver-
sion of EXO-200 designed for reaching this goal, is under
consideration [1]. The lower limit for the 0νββ half-life
reported by EXO-200 is 1.6 × 1025 yr [8]. In addition,
the KamLAND-Zen collaboration reported a 2νββ half-
life of 2.38± 0.02(stat)± 0.14(sys)× 1021 yr and a lower
limit for the 0νββ half-life of 5.7× 1024 yr [9].

Since most of the ββ decay emitters are open shell
nuclei, many calculations of the NME have been per-
formed within the pnQRPA approach and its extensions
[11–13]. However, the pnQRPA calculations of the more
common two-neutrino double beta decay half-lives, which
were measured for about 10 cases [6], are very sensitive
to the variation of the gpp parameter (the strength of the
particle-particle interactions in the 1+ channel) [14, 15],
and this drawback persists in spite of various improve-
ments brought by its extensions, including higher-order
QRPA approaches [13]. Although the QRPA methods do
not seem to be suited to predict the 2νββ decay half-lives,
they use the measured 2νββ decay half-lives to calibrate
the gpp parameters, then use them to calculate the 0νββ
decay NME [12]. Another method that was recently used
to calculate NMEs for most 0νββ decay cases of interest
is the Interacting Boson Model (IBM-2) [16]. However, a
reliable IBM-2 approach for 2νββ decay is not yet avail-
able.

Recent progress in computer power, numerical algo-
rithms, and improved nucleon-nucleon effective interac-
tions, made possible large-scale configuration-interaction
(CI) calculations (also known as shell-model calculations)
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of the 2νββ [17–20] and 0νββ decay NME [21, 22]. The
main advantage of the large-scale shell-model calcula-
tions is that they take into account all of the many-
body correlations for the orbitals near the Fermi sur-
face. Also, they are less dependent on the effective in-
teraction used, as long as they are based on realistic
nucleon-nucleon interactions with minimal adjustments
to the single-particle energies and some two-body matrix
elements so they reproduce general spectroscopy of the
nuclei involved in the decay [22]. Their main drawback
is the limitation imposed by the exploding CI dimen-
sions even for limited increase in the size of the valence
space used. The most important success of the large-
scale shell-model calculations was the correct prediction
of the 2νββ decay half-life for 48Ca [17, 23]. In addition,
the CI calculations do not have to adjust any additional
parameters, i.e. given the effective interaction and the
Gamow-Teller (GT) quenching factor extracted from the
overall spectroscopy in the respective mass-region, they
are able to accurately predict the 2νββ decay half-life of
48Ca.
CI methods provide realistic many-body wave func-

tions (w.f.) for many nuclei from 16O to 100Sn and be-
yond. These wave functions can describe observables
related to specific experiments, e.g. for nuclear astro-
physics and electro-weak interactions with the nucleus.
The minimal valence space required for 136Xe involves
the 0g7/21d5/21d3/22s1/20h11/2 orbitals for protons and
neutrons (the jj55 model space). There are no spu-
rious center-of-mass (CoM) states in the jj55 model

space since the CoM operator ~R does not connect any
of the orbitals. The key is to obtain effective interac-
tions (EI) that can provide energies and wave functions
in the jj55 model space that are at a similar level of
accuracy as those obtained for the sd-shell [24] and for
the pf -shell [25]. The CI ββ decay NME have been re-
ported [18, 21, 26] with continuous improvements of the
EI. These calculations indicate a significant sensitivity of
the results to the improving EI. For example, the quench-
ing factor used to describe 2νββ NME varies from 0.74
[18] to 0.45 [26], and the 0νββ NME varies by a factor of
about 3 between Ref. [18] and the more recent Ref. [21].
One of the drawbacks of model spaces such as jj55 is that
in order to maintain center-of-mass purity they do not
include the spin-orbit partners of orbitals such as 0g7/2
and 0h11/2. The known effect is that the Ikeda sum-rule
is not satisfied, indicating that some the Gamow-Teller
strength, which is so important for both types of NME,
is missing from this model space. For example, in jj55,
the total sum of Gamow-Teller strength for 136Xe is 52,
compared to the value of 84 expected from the Ikeda sum
rule (see also Table I below).
In this Letter we investigate the effects of the missing

0g9/2 and 0h9/2 orbitals in jj55. This expanded model
space that includes seven orbitals for protons and neu-
trons will be called jj77. We consider a hierarchy of

approximations in the jj77 model space. The two-body
matrix elements with good J and T were obtained from
the code CENS [27]. The procedure discussed below was
used to obtain a Hamiltonian for the jj77 model space
that we will refer to as jj77a. In the first step, the short-
range part of the N3LO potential [28] was integrated out
using the Vlowk method [29]. The relative two-body ma-
trix elements were evaluated in a harmonic-oscillator ba-
sis with h̄ω=7.874 (a value appropriate for 132Sn). In
the second step the interaction was renormalized into
the jj77 model space assuming a 100Sn closed core. The
0g9/2 orbital was treated as a hole state, while the others
are treated as particle states. For the energy denomina-
tors we take all orbits in the jj77 space to be degener-
ate, with the other orbitals spaced in units of h̄ω above
and below. The core-polarization calculation used the
Q̂-box method included all non-folded diagrams through
second-order in the interaction, and sums the folded dia-
grams to infinite order [30]. Particle-hole excitations up
through 4h̄ω were included. Matrix elements obtained in
the proton-neutron basis were transformed to a good-T
basis by using the neutron-neutron matrix elements for
the T = 1 components.

The single-particle matrix elements were obtained
starting with the jj55 model space for a 132Sn closed
core. The five single-particle energies for 0g7/2, 1d5/2,
1d3/2, 2s1/2 and 0h11/2 were adjusted to reproduce the
experimental values for neutron holes related to the spec-
trum of 131Sn as given in [31]. The results obtained for
the single-particle energies of protons related to the spec-
trum of 133Sb are in reasonable agreement with experi-
ment [31] except that the 1d5/2 energy is too high by 1.2
MeV and the 1h11/2 energy is too high by 2.4 MeV. Re-
duction of the diagonal two-body matrix elements by 0.3
MeV for these two orbitals improves the agreement with
experiment with minimal overall change to the Hamilto-
nian. The theoretical and experimental spectra for nu-
clei with up to six protons added and/or four neutrons
removed from 132Sn agree within an rms deviation of a
few hundred keV. The results are similar to those shown
and discussed in the review by Coraggio et al. [32]. The
adjustment of the single-particle energies to experiment
implicitly includes the effects due to three-body inter-
actions of one valence nucleon with two nucleons in the
132Sn core. The three-body interaction of two-valence
nucleons with one nucleon in the core is neglected, but it
is small, on the order of 100 keV [33].

The two-hole spectrum for 130Sn and the two-particle
spectrum for 134Te are in best overall agreement with
experiment if the T = 1 matrix elements are multiplied
by 0.9. The results (experiment vs theory) are (1.28,
1.34) MeV for 130Sn and (1.22, 1.35) MeV for 134Te. For
application to the larger jj77 model space, the single-
neutron hole energy for 0g9/2 was placed six MeV below
the 0g7/2 energy in 131Sn, and the single-proton particle
energy for 0h9/2 was placed six MeV above the 0h11/2
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TABLE I: Matrix elements in MeV−1 for 2ν decay calculated
using the standard quenching factor 0.74 for the Gamow-
Teller operator using different number of excitations from
jj55 to the larger model space. The last column gives the
calculated Ikeda sum-rule for 136Xe.

n (0+) n (1+) M2ν Ikeda

0 0 0.062 52

0 1 0.091 84

1 1 0.037 84

1 2 0.020 84

energy in 133Sb. Using this interaction, we calculated
the excitation energies of the 2+, 3+, and 4+ states of
136Xe and 136Ba found deviations from the experimental
values smaller than 200 keV for both n = 0 and n = 1
(see below the definition of n).
The 2νββ half-life for the transition from the 0+ g.s.

of 136Xe to the 0+ g.s. of 136Ba can be calculated [10]
using

[

T 2ν
1/2

]−1

= G2ν |M2ν
GT (0

+)|2 , (1)

where G2ν is a phase space factor, and M2ν
GT (0

+) is the
2νββ matrix element given by the double Gamow-Teller
sum

M2ν
GT (0

+) =
∑

k

〈0+f ||στ
−||1+k 〉〈1

+

k ||στ
−||0+i 〉

Ek + E0

. (2)

Here Ek is the excitation energy of the 1+k state of 136Cs
and E0 = 1

2
Qββ(0

+) + ∆M = 1.31 MeV, where we used
the recently reported [34] Q-value Qββ(0

+) = 2.458 MeV
corresponding to the ββ decays to the g.s. of 136Ba; ∆M
is the 136Cs - 136Xe mass difference. For the 2νββ of
136Xe a G2ν of 1.279×10−18 yr−1MeV 2 [10] was used to
extract [7, 8] the M2ν

GT (0
+) of 0.019 MeV −1. Newer val-

ues of G2ν were recently proposed [35]. They depend on
the fourth power of the axial coupling constant gA, which
may be quenched in heavy nuclei. For gA = 1.254 [10],
the new value [35] of G2ν is 0.925 × 10−18 yr−1MeV 2,
corresponding to a M2ν

GT (0
+) of 0.023 MeV −1.

In Ref. [20] we fully diagonalized 250 1+ states in the
intermediate nucleus to calculate the 2νββ decay NME
for 48Ca. This procedure can be used for somewhat heav-
ier nuclei using the J-scheme shell-model code NuShellX
[36], but for cases with very large dimensions one needs
an alternative method. Here we used a novel improve-
ment [37] of the known strength-function approach [17],
which is very efficient for cases with large dimensions.
such as jj55 and jj77. For example, to calculate the
NME for the decays of 128Te in jj55 and 136Xe in jj77

TABLE II: Matrix elements for 0ν decay using two SRC mod-
els [13], CD-Bonn (SRC1) and Argonne (SRC2). The upper
values of the neutrino physics parameters ηup

j in units of 10−7

are calculated using the G0ν from Refs. [10] and [35].

M0ν
ν M0ν

N M0ν
λ′ M0ν

q̃

n = 0 SRC1 2.21 143.0 1106. 206.8

SRC2 2.06 98.79 849.0 197.2

n = 1 SRC1 1.46 128.0 1007 157.8
∣

∣η
up

j

∣

∣ [10] 8.19 0.093 0.012 0.075
∣

∣η
up

j

∣

∣ [35] 9.02 0.103 0.013 0.083

(n = 1 for 0+ and n = 2 for 1+ in Table I) one needs to
solve problems with m-scheme dimensions of up to the
order of up to ten billions.

The result when restricting the jj77 model space to
jj55 is given on the first line in Table I. As already
mentioned, the Ikeda sum-rule is only 52 rather then 84,
indicating that not all GT strength is available in the
jj55 space. Although the excitation energies of the GT
strength distribution are reasonably well reproduced, the
GT operator στ has to be multiplied by a quenching fac-
tor due to correlations beyond the jj77 model space. In
one major harmonic-oscillator shell calculations, such as
the sd or pf , this quenching factor was determined to be
around 0.74-0.77 (see e.g. Ref. [38, 39]), which is con-
sistent with that obtained in second-order perturbation
theory [40, 41]. Here we use 0.74. Ref. [26] suggests
that one should use a lower quenching factor in the jj55
model space, 0.45, to get an NME consistent with the
recent experimental data. Indeed, our matrix element in
the jj55 model space becomes 0.022 MeV−1 when 0.45
is used.

However, it would be important to check if the missing
spin-orbit partners are responsible for the larger result;
the relative phases in Eq. (2) could lead to large cancel-
lations. Here we consider the larger jj77 model space,
where we can allow a few particles (n) to be excited from
the 0g9/2 orbital or into the 0h9/2 orbital, relative to jj55.
Table I also presents the NME for different combinations
of the allowed n for the initial and final 0+ states and
the intermediate 1+ states. One can see that when n is
1 for the 0+ states and 2 for the 1+ states, the NME
decreases almost to the experimental value without the
need of artificially reducing the quenching factor. In ad-
dition, the Ikeda sum-rule is always satisfied in the larger
model space.

One should mention that in the jj77 model space the
wave functions could have CoM spurious components.
We checked our initial and final 0+ g.s. w.f. and we
found negligible (less than 3 keV) spurious contribution
to expectation values of the CoM Hamiltonian. We did
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not check the amount of CoM spuriously in the interme-
diate 1+ states, but it’s unlikely to be large because the
strength function method [37] performs a small number
of Lanczos iterations (about 30) starting with a door-
way state obtained by applying the GT operator on the
largely nonspuroius 0+ state. As a further check we com-
pared the GT strength (BGT) for the transition from the
g.s. of 136Xe to the first 1+ state in 136Cs with recent
experimental data [42]. Table I of Ref. [42] provides a
BGT of 0.149(21) for the first 1+ state at 0.59 MeV, but
we learned [43] that this will be updated to 0.24(7). Our
BGT is 0.51 in the jj55 model space, but 0.34 in the

largest jj77 model space, much closer to the experimen-
tal value. Although we cannot verify if the calculations
are converged, we can conclude that including all spin-
orbit partners is essential for a good description of the
2νββ for 136Xe.
Having tuned our nuclear structure techniques to get-

ting an accurate description of the two-neutrino double-
beta decay, we calculate the NME necessary for the anal-
ysis of the neutrinoless double-beta decay half-life 136Xe
[22, 44]. Considering the most important mechanisms
that could be responsible for 0νββ decay [45], one can
write the 0νββ half-life as

[

T 0ν
1/2

]−1

= G0ν
∣

∣ηνLM
0ν
ν + ηNM0ν

N + ηλ′M0ν
λ′ + ηq̃M

0ν
q̃

∣

∣

2
, (3)

where M0ν
j NME and ηj neutrino physics parameters for

light neutrino exchange (j = ν), heavy neutrino exchange
(j = N), gluino exchange (j = λ′) and squark-neutrino
mechanism (j = N) as described in Refs. [44, 45]. G0ν

is a phase space factor tabulated in several publications.
One widely used value [10] is 43.7 × 10−15 yr−1. A re-
cent publication [35] proposes 36.05× 10−15 yr−1, which
is about 20% lower. The results for the NME calculated
in the closure approximation are presented in Table II
using the n = 0 and n = 1 0+, w.f. (see Table I). Two
recent short-range correlation (SRC) parameterizations
are used [13, 22]. No quenching of the bare transition
operator was used [22, 46]. The M0ν

ν for the jj55 model
space (n = 0) is consistent with other recent shell-model
results [21]. The NME for the other three mechanisms
calculated within a shell-model approach are reported
here for the first time. The NME in the largest space
(n = 1) are 10-30% lower. These results suggest that
the inclusion of the spin-orbit partners, which proved to
be significant for a good description of the 2νββ NME,
could be also important for a reliable description of the
0νββ NME. In addition, they indicate that the net effect
is a decrease of the NME, which seems to be in agree-
ment with recent QRPA calculations [48], rather than the
increase relative to the jj55 value found in [47] suggest-
ing a trend towards the larger results reported by other
QRPA, IBM-2, Projected Hartree-Fock Bogoliubov [49],
and Generator Coordinate Method [50] calculations. We
performed similar calculations of the NME for the tran-
sition of the 134Te g.s. to the 134Xe g.s., for which n = 2
can be included. When n = 2 is included the T = 1
(pairing) part of the Hamiltonian needs to be reduced by
20% in order to describe the energies of 130Sn and 134Te.
We found that the M0ν

ν NME is somewhat closer to the
jj55 value but still smaller, while the 2νββ NME remains
about the same. These results for the nearby semi-magic

134Te suggest that the NME for 136Xe might not change
significantly when n > 1 truncations are considered for
the 0+ states, provided that the effective interaction is
adjusted to describe the spectroscopy of the nuclei in-
volved. Table II also presents upper limits for the neu-
trino physics parameters

∣

∣ηupj
∣

∣ under the assumption of
single mechanism dominance. They were obtained from
Eq. (3) using the lower limit for the half-life 1.6 × 1025

yr from Ref. [8] and the two phase space factors of Refs.
[10] and [35]. Using the upper limits for |ηνL| = mββ/me

one can extract an upper limit for the effective neutrino
mass mββ of 0.42-0.46 eV.

In conclusion, we reported a new shell-model analysis
of the two-neutrino double beta decay of 136Xe that takes
into account all relevant nuclear orbitals necessary for a
good description of the Gamow-Teller strength. We show
that this extension of the valence space can account for
the small NME without recourse to an artificially small
quenching factor. We also show that it could lead to
smaller NME for the most interesting neutrinoless double
beta decay mode.
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