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We investigate the thermodynamic properties of a half-filled SU(2N) Hubbard model in the two-
dimensional square lattice by the method of the determinant quantum Monte Carlo simulation,
which is free of the fermion “sign problem”. The large number of hyperfine-spin components en-
hances spin fluctuations, which facilitates the Pomeranchuk cooling to temperatures comparable to
the superexchange energy scale in the case of SU(6). Various physical quantities including entropy,
charge fluctuations, and spin correlations are calculated.
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The SU(2N) and Sp(2N) symmetries are usually stud-
ied in high energy physics. They were introduced to con-
densed matter physics originally as a mathematic conve-
nience. For example, large-N analysis was performed for
the SU(2N) symmetric Heisenberg models to systemat-
ically handle strong correlation effects [1–4], while real-
istic electron systems are usually only SU(2) invariant.
However, with the recent development of the ultra-cold
atom physics, fermion systems with SU(2N) and Sp(2N)
symmetries are not just of purely academic interests,
but are currently under experimental investigations. It
was first pointed out in Ref. [5] that large spin alkali
and alkaline-earth fermion systems can exhibit these high
symmetries. For example a generic Sp(4), or, isomorphi-
cally SO(5) symmetry, is proved in fermion systems with
the hyperfine spin F = 3

2 without fine-tuning [5, 6]. This
Sp(4) symmetry can be further augmented to SU(4) for
alkaline-earth fermions, such as 135Ba, 137Ba, and 201Hg
because their interactions are hyperfine-spin independent
[5]. Experimentally, both the fermionic atoms of 173Yb
and 87Sr have been cooled down to quantum degeneracy
[7–9]. The 173Yb (F = I = 5

2 ) and 87Sr (F = I = 9
2 )

systems exhibit the SU(6) and SU(10) symmetries, re-
spectively. Using alkaline-earth fermions to study the
SU(2N) symmetry was also proposed in Ref. [10].

The SU(2N) Hubbard model exhibits interesting phe-
nomena that are absent in the standard SU(2) formula-
tion. It is known that quantum spin fluctuations are en-
hanced by the large number of fermion components [11].
This effect gives rise to exotic quantum magnetism in
large-spin ultra-cold fermi systems with high symmetries
[12–19]. For example, various SU(2N) valence-bond solid
and spin liquid states have been proposed that have not
been observed in solid state systems before [15, 20, 21].
In addition, as we will show below, the multi-component

nature of the SU(2N) Hubbard model also significantly
lowers the charge gap of the Mott-insulating states at
the intermediate interaction strengths comparable to the
bandwidth.
In this paper, we focus on the temperature regime

(t > T ∼ J), which is of current experimental inter-
est. Here t denotes the hopping integral of the Hub-
bard model, J = 4t2/U is the antiferromagnetic ex-
change energy scale, and U is the onsite repulsion. The
thermodynamic properties of the half-filled SU(2N) Hub-
bard model in the 2D square lattice are studied by de-
terminant quantum Monte-Carlo (DQMC) simulations
[22, 23], which is an unbiased, non-perturbative method.
It is free of the sign problem at half-filling, thus high
numerical precision can be achieved down to low tem-
peratures (T/t ∼ 0.1). (Recently, the high temperature
properties of the SU(2N) Hubbard model have been stud-
ied from series expansions, which are only accurate at
T ≫ max(t, U) [24].) Special attentions are devoted to
the interaction-induced adiabatic coolings. We find that
the system can be cooled down to the temperature scale
at J from an initial temperature accessible in current ex-
periments. This Pomeranchuk cooling effect, though it
is very weak in the SU(2) Hubbard model [25, 26], is
enhanced in the SU(6) case.
We consider the following SU(2N) Hubbard model de-

fined in the 2D square lattice at half-filling as

H = −t
∑

〈i,j〉,α

(

c†iαcjα + h.c.
)

+
U

2

∑

i

(

ni −N
)2
, (1)

where α runs over the 2N components; 〈i, j〉 denotes
the summation over the nearest neighbors; ni is the to-
tal particle number operator on site i defined as ni =
∑2N

α=1 c
†
iαciα. The chemical potential µ is set to 0 and

thus does not appear explicitly. Eq. 1 is invariant un-
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der the particle-hole transformation in bipartite lattices.
Similarly to the case of SU(2), it is easy to prove that
the sign problem is also absent for the half-filled SU(2N)
Hubbard model of Eq. 1 in bipartite lattices in the
DQMC simulations.

Below we will present our DQMC simulations of ther-
modynamic quantities of the SU(2N) Hubbard model
with 2N = 4 and 6 on a L × L square lattice with
the periodical boundary condition. The second order
Suzuki-Trotter decomposition is used. The Trotter steps
are taken to be ∆τ = β/M , where β = 1/T is the in-
verse of the temperature T and M ranges from 30 to
150 depending on temperatures. We have checked that
the simulation results converge with varying the values
of ∆τ . Instead of using the Hubbard-Stratonovich (HS)
transformation in the spin channel [27], we adopt the HS
transformation in the charge channel which maintains the
SU(2N) symmetry explicitly [28]. This method gives rise
to errors on the order of (∆τ)4.

Before presenting numerical results, let us explain
qualitatively how the SU(2N) generalization of the Hub-
bard model makes their charge and magnetic properties
different from those of the SU(2) case. When deeply in-
side the Mott insulating state, magnetic properties at
low temperatures are determined by superexchange pro-
cesses. The number of superexchange processes between
a pair of nearest-neighbor sites in the SU(2N) case scales
as N2. This means that the SU(2N) generalization en-
hances magnetic quantum fluctuations, and thus weak-
ens, or even completely suppresses the long-range anti-
ferromagnetic (AF) correlations. These strong magnetic
fluctuations greatly enhance the entropy in the the tem-
perature regime (U > T > J), which is high enough to
suppress short-range AF correlations but not sufficient
to unfreeze charge fluctuations.

The charge properties in the Mott insulating state are
characterized by the charge gap ∆c: the energy cost to
add a particle or a hole into the system. The half-filling
case is a particle-hole symmetric point, and thus a par-
ticle or hole excitation each cost the same energy for the
grand canonical Hamiltonian Eq. 1. In the atomic limit
(U/t → ∞), the charge gap is ∆c → U

2 , which is in-
dependent of 2N . However, for the intermediate inter-
actions comparable with the bandwidth, propagations of
the extra particle (hole) in the AF background can signif-
icantly lower the charge gap. In Fig. 1 (a), we compare
the hopping of an extra hole in the AF background of
the half-filled SU(2) and SU(4) Mott insulators. In the
SU(4) case, there is more than one way for the hole to
hop from one site to another. The mobility of the extra
hole is increased and thus, in the SU(2N) Mott insulat-
ing state, the charge gap is much lower compared to the
SU(2) case. We perform the zero temperature projector
QMC to extract the charge gap from the unequal-time
single-particle correlation functions (see the supplemen-
tary material) as shown in Fig. 1 (b), which verifies the

above argument. Though the charge gap is a ground
state property, it is closely related to the thermodynamic
properties and Pomeranchuk cooling in the temperature
regime we will study (J < T < U). Below we will show
that the differences of the magnetic and charge proper-
ties between the SU(2N) and SU(2) cases facilitate the
Pomeranchuk cooling.
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FIG. 1: (a) Sketches of a hole hopping in the SU(2) (up) and
SU(4) (down) AF backgrounds, respectively. (b) Charge gaps
as a function of 2N at L = 10 and U/t = 8.

Now we address the possibility of cooling down the
system by adiabatically increasing interactions. For spin-
ful fermion systems (e.g. 3He), the Pomeranchuk effect
refers to the fact that increasing temperatures can lead
to solidification because the entropy (per particle) in the
localized solid phase is larger than that of the itinerant
Fermi liquid phase. The reason is that, in the Fermi liq-
uid phase, only fermions close to Fermi surfaces within T
contribute to entropy. In solids however, each site con-
tributes to nearly ln 2 ≈ 0.69 if T is comparable to the
spin exchange energy scale of J , which is much smaller
than the Fermi energy. In the lattice systems near or
at half-filling, increasing interactions suppresses charge
fluctuations and drives systems to the Mott-insulating
state, thus we would expect Pomeranchuk cooling while
adiabatically increasing interactions [29, 30]. However,
the situations are complicated by the AF spin correla-
tions which lift the huge spin degeneracy and reduce the
entropy in the Mott-insulating state. Actually, for the
SU(2) Hubbard model, both at 2D and 3D, DQMC sim-
ulations show that the effect of Pomeranchuk cooling is
not obvious with interactions up to U/t ∼ 10 [25, 26, 31].

To investigate the different behaviors between the
SU(2) and SU(2N) (-say, 2N = 6) fermions during the
Pomeranchuk cooling, we compare the “entropy capabil-
ity” (average entropy per atoms) for the half-filled SU(2)
and SU(6) Mott insulating states at the same temper-
ature T and U . We focus on the temperature regime
(J < T < U). For a certain T , the entropy of the Mott
insulating state comes from two channels: the spin chan-
nel dominated by the spin degeneracy, and the charge
channel determined by excitations above the charge gap.
As we analyzed above, the AF correlations, which lift
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FIG. 2: The isoentropy curves for the half-filled SU(6) Hub-
bard model on a 10×10 square lattice. The dashed line de-
notes the spin superexchange scale in strong coupling regime
J/t = 4t/U .

the spin degeneracy in the SU(2) case, are weakened
by the SU(2N) symmetry. Thus the entropy from the
spin contribution in a half-filled SU(6) Mott insulator is
larger than that of the SU(2) case. This indicates that
the SU(6) Mott insulators have more “entropy capacity”
than the SU(2) ones. For example, in the single-atom
limit, the spin entropies per atom for SU(2) and SU(6)
saturate to the values of SSU(2) = ln[C1

2 ] = 0.693 and
SSU(6) = ln[C3

6 ]/3 = 0.998, respectively, for tempera-
ture T ≫ J . Considering the charge channel will further
strengthen this tendency. Since the charge gap of the
SU(6) Mott insulating state is smaller than that of the
SU(2) case at the same value of U , it is easier to create
excitations above the charge gap in the SU(6) case, which
further increases entropy. The larger entropic capability
of the SU(6) Mott insulating state indicates that it is
easier to exhibit the Pomeranchuk effect.
We have confirmed the above picture by performing

DQMC simulations. The entropies of the SU(6) Hub-
bard model are calculated for various parameter values
of T and U , and the isoentropy curves are displayed in
Fig. 2. The simulated entropy per particle (not per site)
is defined as Ssu(2N) = S/(NL2), where S is the total
entropy in the lattice. It is calculated from the formula

Ssu(2N)(T )

kB
= ln 4 +

E(T )

T
−

∫ ∞

T

dT ′E(T ′)

T ′2 , (2)

where ln 4 is the entropy at the infinite temperature or,
equivalently, T ≫ U ; E(T ) denotes the average internal
energy per particle at temperature T . For low values of
the entropy, adiabatically increasing U leads to a signif-
icant cooling to a temperature comparable to the mag-
netic superexchange scale J , which is an important goal
in current cold atom experiments. This is of direct rel-

evancy to the current experimental progress in ultracold
173Yb atoms [7, 32].
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FIG. 3: Particle number fluctuations v.s. T with parameters
U/t = 4 and different values of 2N on a 10 × 10 lattice. a)
The on-site density fluctuations δsu(2N)(T ). The inset shows
the convergence of δsu(6)(T ) with L = 8, 10, and 12 for the
SU(6) case. b) The local particle number fluctuations in a
2× 2 sub-volume.

Next we study particle number fluctuations for the
half-filled SU(2N) Hubbard model. The normalized on-
site particle fluctuations are defined as

δsu(2N) =

√

〈n2
i 〉 − 〈ni〉2

N
, (3)

where 〈ni〉 = N . At T → ∞, δsu(2N) can be calcu-
lated exactly. It is independent of 2N as δsu(2N)(T →

∞) =
√
2
2 ≈ 0.71, which acts as an upper bound on the

fluctuations. Similarly, at U = 0, δsu(2N) =
√
2
2 and is

independent of both 2N and T . For the general case,
we plot the DQMC simulation results of δ at a relatively
weak interaction strength of U/t = 4 over a large range
of temperatures seen in Fig. 3 (a). For all the cases,
δsu(2N) is suppressed by U away from the upper limit

of
√
2
2 . For the cases of SU(4) and SU(6), δsu(2N)(T )

first falls as T increases, which is a reminiscence of the
Pomeranchuk effect. Then, after reaching a minimum
at T comparable to t, δsu(2N) grows with increasing T .
This indicates that fermions are localized most strongly
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at an intermediate temperature scale at which the spin
channel contribution to entropy dominates. In compar-
ison, the non-monotonic behavior of δsu(2N) is weak in
the SU(2) case. The above data agree with the picture
that large values of 2N enhance spin fluctuations and
thus the Pomeranchuk effect. We also calculate the lo-
cal particle number fluctuations in a small sub-volume:
δsub =

√

[〈n̂2
sub〉 − 〈n̂sub〉2]/〈n̂sub〉 (n̂sub is the total par-

ticle number operator within the sub-volume). As shown
in Fig. 3 (b), for the SU(4) and SU(6) cases, the local
density fluctuations in a 2 × 2 sublattice δ2×2 also ex-
hibit non-monotonic behavior similarly to the case of the
on-site density fluctuation.

FIG. 4: The normalized spin structure factor S(~q) for the
half-filled SU(2N) Hubbard models with 2N equal to (a) 2,
(b) 4, and (c) 6. Parameter values are T/t = 0.1, and U/t = 8.

Next we study spin correlations of the SU(2N) Hub-
bard model. The SU(2N) generators can represented
through fermion operators ci,α(α = 1 ∼ 2N) as Sαβ,i =

c†α,icβ,i −
1

2N δαβni. There are only (2N)2 − 1 inde-
pendent operators due to the constraint

∑

α Sαα = 0.
They satisfy the commutation relations [Sαβ,i, Sγδ,j] =
δi,j(Sαδ,iδγβ − Sγβ,iδαδ). We define the SU(2N) version
of the two-point equal-time spin-spin correlation as

Sspin(i, j) =
1

(2N)2 − 1

∑

α,β

〈Sαβ,iSβα,j〉. (4)

The spin structure factors Ssu(2N)(~q) are calculated at
half-filling and a low temperature, which are defined as

Ssu(2N)(~q) =
1

NL2

∑

~i,~j

ei~q·~rMspin(i, j), (5)

where ~r is the relative vector between sites i and j. The
distributions of Ssu(2N)(~q) with 2N = 2, 4, 6 are plotted
in Fig. 4 a), b) and c), respectively. The sharpness of
the peaks at q = (π, π) indicates the dominant AF cor-
relations in all the cases. With increasing 2N , peaks are
broadened showing a weakening of the AF correlations.

The current experimental limit to the entropy per par-
ticle for the two-component systems is Ssu(2) ∼ 0.77kB.
The corresponding temperature scale is T ∼ t, which is
still larger than J [33]. In contrast, as we analyzed above,
the SU(6) Mott insulating state has more “entropy ca-
pacity”, which means that for a fixed entropy per atom,
the corresponding temperature of the half-filled SU(6)
Mott insulating state is lower than that of the SU(2)
case. As shown in Fig. 2, for Ssu(6) ∼ 0.77kB, the
corresponding temperature of the Mott insulating state
(U/t = 12) can reach the border of the magnetic superex-
change scale J . As for the experimental consequences of
the Pomeranchuk cooling, though it is difficult to directly
measure temperatures in the lattice, the non-monotonic
behavior of the local particle fluctuations, shown in Fig.
3 (a) and (b), can be tested by high-resolution in situ

measurements which have been used to observe the anti-
bundching in ultracold atom Fermi gases [34]. Repeated
measurements of the local particle numbers of identically
prepared systems give rise to particle fluctuations within
the observed volume, which may contain one or several
lattice sites. Recently, the Pomeranchuk cooling has been
observed in 173Yb fermions in optical lattice (SU(6) Hub-
bard model). However, we should point an important
difference between the experiment and our calculation,
namely that the filling factor in the experiment [32] is
1/6 (one fermion per site) as opposed to the assumed
half-filling in our simulations.

In conclusion, we have performed DQMC simulation
for the thermodynamic properties of the 2D SU(2N)
Hubbard model at half-filling in the temperature regime
of direct interest to current experiments. The large num-
bers of fermion components enhance spin fluctuations,
which facilitates the Pomeranchuk cooling to tempera-
tures comparable to the superexchange energy scale. We
have focused on half-filling, though it is interesting to ask
whether the Pomeranchuk cooling can appear in other
filling factors, especially in the the case of 1/6-filling cor-
responding to one atom per site in the SU(6) model. In
this case, DQMC is plagued by the sign problem. Never-
theless, in some situations, for example at high temper-
atures or small values of U , DQMC can still give rise to
reliable results if the sign problem is not severe.
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