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We study the 3D topological insulators in the continuum by coupling spin- 1
2

fermions to the
Aharonov-Casher SU(2) gauge field. They exhibit flat Landau levels in which orbital angular mo-
mentum and spin are coupled with a fixed helicity. The 3D lowest Landau level wavefunctions
exhibit the quaternionic analyticity as a generalization of the complex analyticity of the 2D case.
Each Landau level contributes one branch of gapless helical Dirac modes to the surface spectra,
whose topological properties belong to the Z2-class. The flat Landau levels can be generalized to
an arbitrary dimension. Interaction effects and experimental realizations are also studied.

PACS numbers: 73.43-f,71.70.Ej,73.21.-b

The 2D quantum Hall (QH) systems [1, 2] are among
the earliest examples of quantum states characterized
by topology [3, 4] rather than symmetry in condensed
matter physics. Their magnetic band structures possess
topological Chern numbers defined in time-reversal (TR)
symmetry breaking systems [3, 5–8]. The consequential
quantized charge transport originates from chiral edge
modes [9, 10], a result from the chirality of Landau level
wavefunctions. Current studies of TR invariant topolog-
ical insulators (TIs) have made great success in both 2D
and 3D. They are described by a Z2-invariant which is
topologically stable with respect to TR invariant pertur-
bations [11–22]. On open boundaries, they exhibit odd
numbers of gapless helical edge modes in 2D systems and
surface Dirac modes in 3D systems. TIs have been experi-
mentally observed through transport experiments [23–25]
and spectroscopic measurements [26–32].

The current research of 3D TIs has been focusing on
the Bloch-wave band structures. Nevertheless, LLs pos-
sess the advantages of the elegant analytic properties and
flat spectra, both of which have played essential roles in
the study of 2D integer and fractional QH effects [33–
48]. As pioneered by Zhang and Hu [49], LLs and QH
effects have been generalized to various high dimensional
manifolds [49–54]. However, to our knowledge, TR in-
variant isotropic LLs have not been studied in 3D flat
space before. It would be interesting to develop the LL
counterpart of 3D TIs in the continuum independent of
the band inversion mechanism. The analytic properties
of 3D LL wavefunctions and the flatness of their spec-
tra provide an opportunity for further investigation on
non-trivial interaction effects in 3D topological states.

In this article, we construct 3D isotropic flat LLs
in which spin- 12 fermions are coupled to an SU(2)
Aharonov-Casher potential. When odd number LLs are
fully filled, the system is a 3D Z2 TI with TR symmetry.
Each LL state has the same helicity structure, i.e., the
relative orientation between orbital angular momentum
and spin. Just like that the 2D lowest LL (LLL) wave-
functions in the symmetric gauge are complex analytic

functions, the 3D LLL ones are mapped into quaternionic
analytic functions. Different from the 2D case, there is no
magnetic translational symmetry for the 3D LL Hamil-
tonian due to the non-Abelian nature of the gauge field.
Nevertheless, magnetic translations can be applied for
the Gaussian pocket-like localized eigenstates in the LLL.
The edge spectra exhibit gapless Dirac modes. Their sta-
bility against TR invariant perturbations indicates the Z2

nature. This scheme can be easily generalize to N dimen-
sions. Interaction effects and the Laughlin-like wavefunc-
tions for the 4D case are constructed. Realizations of the
3D LL system are discussed.
We begin with the 3D LL Hamiltonian for a spin- 12

non-relativistic particle as

H3D,LL =
1

2m

∑

a

{

− i~∇a − q

c
Aa(~r)

}2
+ V (r), (1)

where Aa
αβ = 1

2Gǫabcσ
b
αβr

c is a 3D isotropic SU(2) gauge
with Latin indices run over x, y, z and Greek indices de-
note spin components ↑, ↓; G is a coupling constant and
σ’s are Pauli matrices; V (r) = − 1

2mω
2
0r

2 is a harmonic
potential with ω0 = |qG|/(2mc) to maintain the flatness

of LLs. ~A can be viewed as an Aharonov-Casher potential
associated with a radial electric field linearly increasing
with r as ~E(r) × ~σ. H3D,LL preserves the TR symme-
try in contrast to the 2D QH with TR symmetry broken.
It also gives a 3D non-Abelian generalization of the 2D
quantum spin Hall Hamiltonian based on Landau levels
studied in Ref. [11]. More explicitly, H3D,LL can be fur-
ther expanded as a harmonic oscillator with a constant
spin-orbit (SO) coupling as

H3D,LL
∓ =

p2

2m
+

1

2
mω2

0r
2 ∓ ω0~σ · ~L, (2)

where ∓ apply to the cases of qG > 0 (< 0), respectively.
The spectra of Eq. 2 were studied in the context of the
supersymmetric quantum mechanics [55]. However, its
connection with Landau levels was not noticed. Eq. 1
has also been proposed to describe the electrodynamic
properties of superconductors [56–58].
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FIG. 1: a) The eigenstates of the 3D harmonic oscillator la-
beled by total angular momentum j± = l ± 1

2
. Following the

solid diagonal (dashed) lines, these states are reorganized into
the 3D LL sates with the positive (negative) helicity. b) The
magnetic translation for the LLL state (l = 0) localized at
the origin in the case of qG > 0, whose spin is set along an
arbitrary direction in the xy-plane. The displacement vec-

tor ~δ lies in the plane perpendicular to spin orientation. The
resultant state remains in the LLL as a localized Gaussian
pocket.

The spectra and eigenstates of Eq. 1 are explained
as follows. We introduce the helicity number for the
eigenstate of ~L · ~σ, defined as the sign of its eigen-
value of the total angular momentum ~J = ~L + ~S,
which equals ±1 for the sectors of j± = l ± 1

2 , re-
spectively. At qG > 0, the eigenstates are denoted
as ψnr ;j±,jz ;l(~r) = Rnr,l(r)Yj± ,jz;l(Ω̂), where the radial

function is Rnrl(r) = rle
− r2

4l2
G F (−nr, l +

3
2 ,

r2

2l2
G

); F is

the confluent hypergeometric function and lG =
√

~c
qG is

the analogy of the magnetic length; Yj±,jz;l(Ω̂)’s are the
spin-orbit coupled spheric harmonic with j± = l ± 1

2 ,
respectively. Flat spectra appear with infinite degen-
eracy in the sector of j+, where the energy dispersion
E+

nr ,l
= (2nr +

3
2 )~ω0 is independent of l, and thus nr

serves as the LL index. For the sector of j−, the energy
disperses with l as E−

nr ,l
= [2(nr + l) + 5

2 ]~ω0. Similar
results apply to the case of qG < 0, where the infinite de-
generacy occurs in the sector of j−. These LL wavefunc-
tions are the same as those of the 3D harmonic oscillator
but with different organizations. As illustrated in Fig. 1
(a), these eigenstates along each diagonal line with the
positive (negative) helicity fall into the flat LL states for
the case of qG > 0 (< 0), respectively.

Compared to the 2D case, a marked difference is
that the 3D LL Hamiltonian has no magnetic trans-
lational symmetry. The non-Abelian field strength
grows quadratically with r as Fij(~r) = ∂iAj − ∂jAi −
iq
~c [Ai, Aj ] = gǫijk

{

σk+ 1
4l2

G

rk(~σ ·~r)
}

. Nevertheless, mag-

netic translations still apply to the highest weight states
of the total angular momentum ~J = ~L+ ~S in the LLL at
qG > 0. For simplicity, we drop the normalization factors
of wavefunctions below. For the positive helicity states
with jz = j+, ~L and ~S are parallel to each other. Their

wavefunctions are denoted by ψhw
ẑ,l (~r) = (x+ iy)le

− r2

4l2
G ⊗

αΩ̂=ẑ , where αΩ̂ is the spin eigenstate of Ω̂ ·~σ with eigen-
value 1. For these states, the magnetic translation is
defined as usual Tẑ(~δ) = exp[−~δ · ~∇ + i

4l2G
~rxy · (ẑ × ~δ)],

where ~δ is the displacement vector in the xy-plane and
~rxy is the projection of ~r in the xy-plane. The resultant

state, Tẑ(~δ)ψ
hw
ẑ,l (~r) = e

i
~rxy·(ẑ×δ)

4l2
G ψhw

ẑ,l (~r−~δ), remains in the
LLL. Generally speaking, the highest weight states can
be defined in a plane spanned by two orthogonal unit

vectors ê1,2 as ψhw
ê3,l

(~r) = [(ê1 + iê2) · ~r]le
− r2

4l2
G ⊗ αê3 with

ê3 = ê1 × ê2. The magnetic translation for such states
is defined as Tê3(

~δ) = exp[−~δ · ~∇ + i
4l2

G

~r12 · (ê3 × ~δ)],

where ~δ lies in the ê1,2-plane and ~r12 = ~r − ê3(~r · ê3).
As an example, let us translate the LLL state localized
at the origin as illustrated in Fig. 1 (b). We set the
spin direction of ψLLL

ê3,l=0 in the xy-plane parameterized by

ê3(γ) = x̂ cos γ + ŷ sin γ, i.e., αê3(γ) =
1√
2
(| ↑〉+ eiγ | ↓〉),

and translate it along ê1 = ẑ at the distance R. The
resultant states read as

ψγ,R(ρ, φ, z) = ei
g
2Rρ sin(φ−γ)e−|~r−Rẑ|2/4l2G ⊗ αê3(γ), (3)

where ρ =
√

x2 + y2 and φ is the azimuthal angular of ~r
in the xy-plane. Such a state remains in the LLL as an
off-centered Gaussian wave packet.

The highest weight states and their descendent states
from magnetic translations defined above have a clear
classic picture. The classic equations of motion are de-
rived as

~̇r =
1

m
~p+ 2ω0(~r ×

1

~

~S), ~̇p = 2ω0~p×
1

~

~S −mω2
0~r,

~̇S =
2ω0

~

~S × ~L, (4)

where ~p is the canonical momentum, ~L = ~r × ~p is the
canonical orbital angular momentum, and ~S here is the
expectation value of ~

2~σ. The first two describe the mo-
tion in a non-inertial frame subject to the angular ve-
locity 2ω0

~
~S, and the third equation is the Larmor pre-

cession. ~L · ~S is a constant of motion of Eq. 4. In the
case of ~S ‖ ~L, it is easy to prove that both ~S and ~L are
conserved. Then the cyclotron motions become coplanar
within the equatorial plane perpendicular to ~S. Centers
of the circular orbitals can be located at any points in
the plane.

The above off-centered LLL states break all the ro-
tational symmetries. Nevertheless, we can recover the
rotational symmetry around the axis determined by the
origin and the packet center. Let us perform the Fourier
transform of ψγ,R(ρ, φ, z) in Eq. 3 with respect to the az-
imuthal angle γ of spin polarization. The resultant state,

ψjz=m+ 1
2 ,R

(ρ, φ, z) =
∫ 2π

0
dγ
2π e

imγψγ,R, is a jz-eigenstate
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as

e
−|~r−Rẑ|2

4l2
G eimφ

{

Jm(x)| ↑〉+ Jm+1(x)e
iφ| ↓〉

}

, (5)

with x = Rρ/(2l2G). At large distance of R, the spatial
extension of ψjz=m+ 1

2 ,R
in the xy-plane is at the order

of ml2G/R, which is suppressed at large values of R and
scales linear with m. In particular, the narrowest states
ψ± 1

2 ,R
exhibit an ellipsoid shape with an aspect ratio

decaying as lG/R when R goes large.
In analogy to the fact that the 2D LLL states are com-

plex analytic functions due to chirality, we have found
an impressive result that the helicity in 3D LL systems
leads to the quaternionic analyticity. Quaternion is the
first discovered non-commutative division algebra, which
has three anti-commuting imaginary units i, j and k, sat-
isfying i2 = j2 = k2 = −1 and ij = k. It has been applied
in quantum systems [59, 60] and SO coupled BECs [61].
Just like two real numbers forming a complex number,
a two-component complex spinor ψ = (ψ↑, ψ↓)T can be
viewed as a quaternion defined as f = ψ↑ + jψ↓. In the
quaternion representation, the TR transformation iσ2ψ

∗

becomes Tf = −fj satisfying T 2 = −1; multiplying a
U(1) phase factor eiφψ corresponds to feiφ; the SU(2)

operations e−iσx
2 φψ, e−i

σy
2 φψ, and e−iσz

2 φψ map to e
k
2φf ,

e
j
2φf , and e−

i
2φf , respectively. The quaternion version

of ψLLL
j=j+,jz=m+ 1

2

is fLLL
j+,jz(x, y, z) = Ψ↑,j+,jz + jΨ↓,j+,jz ,

where Ψ↑,j+,jz = 〈j+, jz |l,m; 12 ,
1
2 〉rlYl,m, Ψ↓,j+,jz =

〈j+, jz|l,m + 1; 1
2 ,− 1

2 〉rlYl,m+1. Please note that the
Gaussian factor does not appear in fLLL

j+,jz which is a
quaternionic polynomial.
As a generalization of the Cauchy-Riemann condition,

a quaternionic analytic function f(x, y, z, u) satisfies the
Fueter condition [62] as

∂f

∂x
+ i

∂f

∂y
+ j

∂f

∂z
+ k

∂f

∂u
= 0, (6)

where x, y, z and u are coordinates in the 4D space. In
Eq. 6, imaginary units are multiplied from the left, thus
it is the left-analyticity condition which works in our con-
vention. Below, we prove the LLL function fLLL

j+,jz
(x, y, z)

satisfying Eq. 6. Since fLLL
j+,jz

is defined in 3D space, it
is a constant over u, and thus only the first three terms
in Eq. 6 apply to it. Obviously the highest weight states
with spin along the z-axis, fLLL

j+=jz=l+ 1
2

= (x + iy)l, sat-

isfy Eq. 6 which is reduced to complex analyticity. By
applying an arbitrary SU(2) rotation g characterized by
the Eulerian angles (α, β, γ), fLLL

j+=jz
transforms to

f ′, LLL(x, y, z) = e−iα2 ej
β
2 e−i γ2 fLLL

j+=jz (x
′, y′, z′), (7)

where (x′, y′, z′) are the coordinates by applying the
inverse of g on (x, y, z). We check that ( ∂

∂x +

i ∂
∂y + j ∂

∂z )f
′LLL(x, y, z) = ei

α
2 e−j β

2 ei
γ
2

{

∂
∂x′ + i ∂

∂y′ +

j ∂
∂z′

}

fLLL
j+,jz

(x′, y′, z′) = 0. Essentially, we have proved

that Fueter condition is rotationally invariant. Since all
the highest weight states are connected through SU(2)
rotations, and they form over-complete basis for the an-
gular momentum representations, we conclude that all
the 3D LLL states with the positive helicity are quater-
nionic analytic.
Next we prove that the set of quaternionic LLL states

fLLL
j+=l+ 1

2 ,jz
form the complete basis for quaternionic val-

ued analytic polynomials in 3D. Any linear superposi-
tion of the LLL states with j+ can be represented as

fl =
∑j+

jz=−j+
fLLL
j+,jz

cjz , where cjz is a complex coeffi-

cient. Because of the TR relation fLLL
j+,−jz

= −fLLL
j+,−jz

j,
fl can be expressed in terms of l+1 linearly independent
basis as

fl(x, y, z) =

l
∑

m=0

fLLL
j+=l+ 1

2 ,jz=m+ 1
2
qm, (8)

where qm = cm+ 1
2
−jc−m−1

2
is a quaternion constant. On

the other hand, it can be calculated that the rank of the
linearly independent l-th order quaternionic polynomials
satisfying Eq. 6 is just C2

l+2 −C2
l+1 = l+ 1, thus fLLL

j+,jz
’s

with jz ≥ 1
2 are complete.

The topological nature of the 3D LL problem exhibits
clearly in the gapless surface states. A numeric calcu-
lation of the gapless surface spectra is presented in the
supplementary material. At qG > 0, inside the bulk,
LL spectra are flat with respect to j+ = l + 1

2 . As l
goes large, the classical orbital radius rc approaches the
open boundary with the radius R0. For example, for a
LLL state, rc =

√
2llG. States with l > lc ≈ 1

2 (R0/lG)
2

become surface states. Their spectra become E(l) ≈
l(l+ 1) ~

2

2mR2
0
− l~ω0. When the chemical potential µ lies

inside the gap, it cuts the surface states with the Fermi
angular momentum denoted by lf . These surface states

satisfy ~σ · ~L = l~, thus the their spectra can be linearized
around lf as Hbd = (vf/R0)~σ · ~L − µ. This is the Dirac
equation defined on a sphere with the radius R0. It can
be expanded around ~r = R0êr asHbd = ~vf (~k×~σ)·êr−µ.
Similar reasoning applies to other Landau levels which
also give rise to Dirac spectra. Due to the lack of Bloch
wave band structure, it remains a challenging problem
to directly calculate the bulk topological index. Never-
theless, the Z2 structure manifests through the surface
Dirac spectra. Since each fully occupied LL contributes
one helical Dirac Fermi surface, the bulk is Z2-nontrivial
(trivial) if odd (even) number of LLs are occupied. In
the Z2-nontrivial case, the gapless helical surface states
are protected by TR symmetry and are robust under TR
invariant perturbations.
In Eq. 2, the harmonic frequency ωT is set to be equal

with the SO frequency ω0 to maintain the flatness of LL
spectra. However, the Z2 topology of the 3D LLs does
not rely on this. Define ∆ω = ωT − ω0, and we set
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∆ω ≥ 0 to maintain the spectra bounded from below.
∆ω > 0 corresponds to imposing an external potential
∆V (r) = 1

2m(ω2
T −ω2

0)r
2 to the bulk Hamiltonian of Eq.

2. If ∆ω ≪ ω0, ∆V (r) is soft. It results in energy dis-
persions of 3D LLs but does not affect their topology.
For simplicity, let us check the case of qG > 0. The
~σ · ~L term commutes with the overall harmonic poten-
tial, thus the LL wavefunctions remain the same as those
of Eq. 2 by replacing ω0 with ωT . Their dispersions
become E+

nr ,j+
= (2nr + 1)~ωT + 1

2~ω0 + j+~∆ω which

are very slow. In other words, ∆V (r) imposes a finite
sample size with the radius of R2 < ~/(m∆ω) = 2lG

ω0

∆ω
even without an explicit boundary. Inside this region,
∆V is smaller than the LL gap, and the LL states are
bulk states. Their energies are within the LL gap and
the angular momentum numbers j+ < 2ωT

∆ω . LL states
outside this region can be viewed as surface states with
positive helicity. For a given Fermi energy, it also cuts
a helical Fermi surface with the same form of effective
surface Hamiltonian.

The above scheme can be easily generalized to arbi-
trary dimensions by combining the N -D harmonic oscil-
lator potential and SO coupling. For example, in 4D, we

have H4D,LL =
p2
4D

2m + 1
2mω

2
0r

2
4D − ω0

∑

1≤a<b≤4 Γ
abLab,

where Lab = rapb−rbpa and the 4D spin operators are de-
fined as Γij = − i

2 [σ
i, σj ], Γi4 = ±σi with 1 ≤ i < j ≤ 3.

The ± signs of Γi4 correspond to two complex conjugate
irreducible fundamental spinor representations of SO(4),
and the + sign will be taken below. The spectra of the
positive helicity states are flat as E+,nr

= (2nr + 2)~ω.
Following a similar method in 3D, we prove that the
quaternionic version of the 4D LLL wavefunctions sat-
isfy the full equation of Eq. 6. They form the complete
basis for quaternionic left-analytic polynomials in 4D.

We consider the interaction effects in the LLLs. For
simplicity, let us consider the 4D system and the short-
range interactions. Fermions can develop spontaneous
spin polarization to minimize the interaction energy in
the LLL flat band. Without loss of generality, we as-
sume that spin takes the eigenstate of Γ12 = Γ34 = σ3

with the eigenvalue 1. The LLL wavefunctions satisfy-
ing this spin polarization can be expressed as ΨLLL,4D

m,n =

(x+iy)m(z+iu)ne
− r24D

4lc
G

2 ⊗|α〉 with |α〉 = (1, 0)T . The 4D
orbital angular momentum number for the orbital wave-
function is l = m+n with m ≥ 0 and n ≥ 0. It is easy to
check that ΨLLL,4D

m,n is the eigenstate of
∑

ab LabΓ
ab with

the eigenvalue (m + n)~. If all the ΨLLL,4D
m,n ’s are filled

with 0 ≤ m < Nm and 0 ≤ n < Nn, we write down a
Slater-determinant wavefunction as

Ψ(v1, w1; · · · ; vN , wN ) = det[vαi w
β
i ], (9)

where the coordinates of the i-th particle form two pairs
of complex numbers abbreviated as vi = xi + iyi and
wi = zi+iui; α, β and i satisfy 0 ≤ α < Nm, 0 ≤ β < Nn,

and 1 ≤ i ≤ N = NmNn. Such a state has a 4D uniform
density as ρ = 1

4π4l2G
. We can write down a Laughlin-like

wavefunction as the k-th power of Eq. 9 whose filling rel-
ative to ρ should be 1/k2. For the 3D case, we also con-
sider the spin polarized interacting wavefunctions. How-
ever, it corresponds to that fermions concentrate to the
highest weight states in the equatorial plane perpendic-
ular to the spin polarization, and thus reduces to the
2D Laughlin states. In both 3D and 4D cases, fermion
spin polarizations are spontaneous, thus low energy spin
waves should appear as low energy excitations. Due to
the SO coupled nature, spin fluctuations couple to orbital
motions, which leads to SO coupled excitations and will
be studied in a later publication.

One possible experimental realization for the 3D LL
system is the strained semiconductors. The strain ten-
sor ǫab = 1

2 (∂aub + ∂bua) generates SO coupling as
HSO = ~α[(ǫxyky−ǫxzkz)σx+(ǫzykz−ǫxykx)σy+(ǫzxkx−
ǫyzky)σz ] where α = 8×105m/s for GaAs. The 3D strain

configuration with ~u = f
2 (yz, zx, xy) combined with a

suitable scalar potential gives rise to Eq. 1 with the cor-
respondence ω0 = 1

2αf . A similar method was proposed
in Ref. [11] to realize 2D quantum spin Hall LLs. A LL
gap of 1mK corresponds to a strain gradient of the order
of 1% over 60 µm, which is accessible in experiments.
Another possible system is the ultra-cold atom system.
For example, recently evidence of fractionally filled 2D
LLs with bosons has been reported in rotating systems
[63].

Furthermore, synthetic SO coupling generated through
atom-light interactions has become a major research di-
rection in ultra-cold atom system [64, 65]. The SO cou-

pling term in the 3D LL Hamiltonian ω~σ · ~L is equiv-
alent to the spin-dependent Coriolis forces from spin-
dependent rotations, i.e., different spin eigenstates along
±x, ±y and ±z axes feel angular velocities parallel to
these axes, respectively. An experimental proposal to re-
alize such an SO coupling has been designed and will be
reported in a later publication [66].

In conclusion, we have generalized the flat LLs to 3D
and 4D flat spaces, which are high dimensional topo-
logical insulators in the continuum without Bloch-wave
band structures. The 3D and 4D LLL wavefunctions
in the quaternionic version form the complete bases of
the quaternionic analytic polynomials. Each filled LL
contributes one helical Dirac Fermi surface on the open
boundary. The spin polarized Laughlin-like wavefunc-
tion is constructed for the 4D case. Interaction effects
and topological excitations inside the LLLs in high di-
mensions would be interesting for further investigation.
In particular, we expect that the quaternionic analyticity
would greatly facilitate this study.

This work grew out of collaborations with J. E. Hirsch,
to whom we are especially grateful. Y. L. and C. W.
thank S. C. Zhang and J. P. Hu for helpful discussions.
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Note Added: Near the completion of this manuscript,

we learned that the 3D Landau level problem is also stud-
ied by S. C. Zhang [67].
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