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Recently developed numerical methods have enabled the explicit construction of the supercon-
ducting state of the Hubbard model of strongly correlated electrons in parameter regimes where the
model also exhibits a pseudogap and a Mott insulating phase. dx2

−y2 symmetry superconductivity
is found to occur in proximity to the Mott insulator, but separated from it by a pseudogapped
non-superconducting phase. The superconducting transition temperature and order parameter am-
plitude are found to be maximal at the onset of the normal-state pseudogap. The emergence of
superconductivity from the normal state pseudogap leads to a decrease in the excitation gap. All of
these features are consistent with the observed behavior of the copper-oxide superconductors.

PACS numbers: 71.27.+a,71.28.+d,78.30.-j,74.72.Kf,

Layered perovskite-based copper oxide compounds dis-
play three remarkable properties: d-wave superconduc-
tivity with unprecedentedly high transition temperatures
[1], a nontrivial (‘Mott’) insulating state [2] and non-
Fermi-liquid physics, most notably a ‘pseudogap’ regime
in which the density of states is strongly suppressed in
some parts of the Brillouin zone but not in others [3].
P. W. Anderson [2] argued that these three classes of
phenomena have a common origin as strong-correlation
effects understandable in terms of the two-dimensional
repulsive Hubbard model, a minimal model of interact-
ing electrons on a lattice with Hamiltonian

H =
∑

p,σ

(ǫp − µ) c†p,σcp,σ + U
∑

i

ni,↑ni,↓, (1)

where εp = −2t(cospx+cospy)+4t′ cos px cos py an elec-
tron dispersion and U > 0 a local interaction which dis-
favors double occupancy of a site.
In the years since Anderson’s paper, the interplay of

the pseudogap and superconductivity and the relation
of both to the Hubbard model have been of central in-
terest to condensed matter physicists. The existence
of d-wave superconductivity in the Hubbard model has
been demonstrated by perturbative analytic calculations
[4] (later improved by renormalization group methods
[5, 6]) and by numerics [7, 8]. The issue of the pseu-
dogap has been more controversial. It has been variously
argued that the pseudogap is a signature of unusual su-
perconducting fluctuations [9–11], of a competing non-
superconducting phase or regime [3, 12], or of physics
not contained in the Hubbard model [13]. Theoretical
determination of the interplay of the pseudogap and su-
perconductivity in the Hubbard model is important in
helping resolve this controversy, and will provide insight
into the pseudogap phenomenon and into strongly corre-
lated superconductivity more generally, but this requires
access to intermediate/strong couplings for which pertur-
bation theory is inadequate.
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FIG. 1: Superconducting phase diagram of the two-

dimensional Hubbard model in plane of interaction
strength U and carrier concentration x computed using the
8-site (right panel), the 4-site (left upper panel), and 16-site
(left lower panel) DCA dynamical mean field approximation
at temperature T = t/40 with t′/t = 0. Dashed line: loca-
tion of the normal state pseudogap onset. Circles and shad-
ing (red on-line) indicate the superconducting region; squares
(black on-line) and no shading the non-superconducting Fermi
liquid; diamonds and lighter shading (blue on-line) the non-
superconducting pseudogap region; triangles and heavy solid
line (dark green on-line) the Mott insulating region at n = 1
and U > Uc. Open circles (light green on line) denote the
points analyzed in Fig. 2. ‘×’ and ‘+’ symbols denote 16-site
data at U/t = 6 extrapolated from a normal state solution,
reproduced from Yang et al. [14].

The development of cluster dynamical mean field the-
ory [15] has provided important non-perturbative infor-
mation about the Hubbard model. Dynamical mean field
theory approximates the electron self energy in terms of
a finite number of auxiliary functions determined from
the solution of an N -site quantum impurity model and
becomes exact as N tends to infinity. In this paper we
use dynamical mean field methods to determine the in-
terplay of superconductivity and the pseudogap in the
Hubbard model. This is challenging because the theory
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of the superconducting state involves both normal (N)
and anomalous (A) components of the Green’s function
G and self-energy Σ, leading to a doubling of the size of
all matrices involved in the calculation, and hence to at
least an 8-fold increase in computational burden, which
is further increased by the need to reach very low tem-
peratures.

We have constructed the superconducting state and
studied its interplay with the pseudogap using clusters
of N = 4, 8, 16 sites, a size range found in previous work
[16] to be large enough to distinguish generic N → ∞ be-
havior from that specific to particular clusters. Specifics
of our methods are given in the supplementary materi-
als; here we briefly note that a key aspect of our study is
the use of recently developed ‘submatrix update’ numer-
ical techniques [17–19] which enable access to couplings
strong enough to produce a pseudogap at temperatures
low enough to construct the superconducting state for
cluster size N large enough to reasonably represent the
N → ∞ limit. Our key results are that the pseudogap
and superconductivity are competing phases and that,
remarkably, the onset of superconductivity within the
pseudogap phase leads to a decrease in the excitation
gap, in sharp contrast to conventional situations where
the onset of superconductivity increase the gap.

Our analysis builds on previous dynamical mean field
results. In pioneering papers Lichtenstein and Katsnel-
son [20] and Maier et al. [21] showed that N = 4 cluster
dynamical mean field approximation yielded dx2−y2 su-
perconductivity while subsequent studies of Maier and
collaborators [7] on clusters with N as large as 26 pro-
vided convincing evidence that the superconductivity
found in the small cluster calculations is not an arti-
fact, but rather is a property of the infinite cluster size
limit, i.e. of the Hubbard model. However, the studies of
Ref. [7] were restricted to relatively high temperatures, so
that the transition temperature was inferred from studies
of the pair susceptibility and the superconducting state
was not constructed and to a modest interaction U = 4t,
too small to give a pseudogap. Very recently Yang and
collaborators [14] analysed the pairing susceptibility for
higher interaction strengths where a pseudogap occured,
but still did not construct the superconducting state.
The pioneering work of Huscroft et al. [22] showed

the existence of a normal-state pseudogap in the dynam-
ical mean field approximation and many authors (using
mainly N=4 approximations) have studied its properties
[23–41] and several groups (still within the 4-site approx-
imation) have studied the interplay of superconductivity
and the pseudogap [31, 42–46]. A key finding of the 4-site
work, in contrast to the larger-cluster studies of Ref. [14]
is that superconductivity persists all the way to the Mott
insulating boundary, leaving open the question whether
it is the pseudogap per se, or simply Mott physics, which
suppresses the superconductivity.

More recent developments [18] have enabled re-

searchers to access clusters large enough to obtain a rea-
sonable picture of the N → ∞ limit [14, 16, 47–51]. It
has been found [16] that in DCA clusters of size N > 4
the Mott transition is multistaged, with the fully gapped
Mott insulating state being separated from the Fermi liq-
uid state by an intermediate phase, in which regions of
momentum space near the (0, π)/(π, 0) point are gapped
and regions of momentum space near (±π/2,±π/2) are
not. By contrast, in most of the N = 2, 4 calculations
reported to date there is at half filling no intermedi-
ate phase separating the insulator and the Fermi liquid
[34, 35], while if the insulator is destroyed by doping an
intermediate phase with a suppressed, but non-zero, den-
sity of states is found [34, 35, 41]. In this paper we ex-
tend the new methodology to examine the properties of
the superconducting state at N large enough to properly
represent the pseudogap.

The right-hand panel of Fig. 1 shows the phase diagram
determined from a comprehensive survey of parameter
space for the N = 8 dynamical cluster approximation,
which previous work [16] shows adequately represents the
N → ∞ normal state physics of the model. Studies of se-
lected U and doping values in the computationally much
more expensive N = 16 site cluster confirm (lower left
panel) that the physics found for N = 8 is generic. The
scan of the phase diagram is conducted at temperature
T = t/40 but checks of selected interaction and doping
values at our lowest accessible temperature T = t/60 (see
also Ref. [52]) indicate that lower temperatures do not
bring significant changes (see supplementary material).

dx2−y2-symmetry superconductivity, with a typical
transition temperature ∼ t/40 ≈ 100K (using a t ≈
0.3eV representative of the CuO2 superconductors) oc-
curs in a band of interaction strength and density,
vanishing if interaction or doping are tuned too far
away from the insulating state but separated from the
Mott insulator by a region of pseudogapped but non-
superconducting states. This result, previously inferred
from extrapolation of the pairing susceptibility [14] at
high temperature, is here confirmed. The onset of the
normal state pseudogap (dashed line) corresponds to the
maximum in superconducting order parameter (see sup-
plementary material) and to the maximum in transition
temperature (see below). The inset of Fig. 2, supple-
mentary material, shows that the superconducting region
remains separated from the pseudogap even as T → 0.

The upper left panel shows that the situation is differ-
ent in the N = 4 approximation. In this case, supercon-
ductivity extends all the way to the boundary of the Mott
phase, as has previously been found [44–46, 53]. We be-
lieve that the difference arises because in the 8 and 16 site
cluster approximations the pseudogap leads at T = 0 to
a complete suppression of the density of states in the mo-
mentum region (0, π) important for superconductivity; in
the 4-site approximations the pseudogap produces a den-
sity of states which is suppressed relative to the Fermi
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liquid, but is still non-vanishing in the regions important
for superconductivity (see, e.g. Fig. [3] of Ref. [35] or
Fig. [2] of Ref. [46]). Variational Monte Carlo studies [54–
61] also do not find an intermediate non-superconducting
phase; the difference may have to do with the ability of
the variational wave functions to represent the physics of
the pseudogap but this issue demands further research.
Fig. 2 presents the frequency and temperature depen-

dence of the density of states. The upper panel shows
spectra representative of dopings higher than, or interac-
tions weaker than, the values which maximize Tc, so that
superconductivity emerges from a relatively conventional
normal state. The spectra are consistent with expecta-
tions from standard theory [62]: the onset of supercon-
ductivity is associated with a suppression of density of
states at low frequency and with the formation of den-
sity of states (“coherence”) peaks. We define the super-
conducting gap ∆ as half of the peak to peak distance.
The area in the coherence peaks comes mainly from the
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FIG. 2: Analytically continued spectral function com-
puted at U = 6t for antinodal sector showing temperature
evolution of gap structure for a typical optimally doped /
overdoped state (x = 0.076, upper panel) and underdoped
pseudogap state (x = 0.034, lower panel). Solid lines: su-
perconducting spectral function. Heavy dashed lines: nor-
mal state spectral function, obtained for T = t/30. Light
dashed line (lower panel): normal state density of states at
T = t/60 obtained by suppressing superconductivity. Ar-
rows mark spectral function maxima used to determine su-
perconducting gap size ∆. Dotted lines: pseudogap energy at
T = t/30 obtained from maximum in spectral function.

states removed at |ω| < ∆. The gap amplitude develops
very rapidly with temperature: only at the temperature
closest to Tc is the peak to peak splitting appreciably
different from its value at the lowest T .

The situation is quite different when superconductiv-
ity emerges from the pseudogap regime. Representative
spectra are shown in the lower panel of Fig. 2. The nor-
mal state pseudogap is visible at T > Tc as a suppression
of the density of states at low frequencies with a broad
gap structure at higher frequencies. The T < Tc nor-
mal state density of states (obtained by suppressing su-
perconductivity) displays essentially the same behavior.
The development of superconductivity is characterized
by the formation of coherence peaks at energies below

the pseudogap, i.e. by a decrease in gap magnitude as
the superconducting state is entered. This behavior is
consistent with recent experimental reports [63] that in
underdoped cuprates the emergence of superconductiv-
ity out of the pseudogap regime is associated with the
formation of new states at energies lower than the pseu-
dogap energy and that the superconducting gap is tied
to the pseudogap. Furthermore, most (typically more
than 50%) of the spectral weight in the coherence peak
is drawn from frequencies greater than ∆.

Fig. 3 presents the superconducting transition temper-
ature determined as described in the supplementary ma-
terial, as well as the gap values obtained as described
above. Similar to the anomalous expectation value (in-
set, Fig. 1), the transition temperature has a dome-like
behavior, with the highest transition temperature occur-
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FIG. 3: Gap to transition temperature ratio 2∆/Tc

(main panel) computed using the 8-site DCA approximation
both by varying U at x = 0 (open symbols, lower axis, red
color, UMott = 6.4t) and by varying x for U = 6t (filled
symbols, upper axis, black). Gap defined as peak to peak
distance in analytically continued spectral function. Left in-
set, squares: doping and interaction dependence of transition
temperature for same parameters, showing superconducting
dome. Right inset, diamonds: doping and interaction depen-
dence of gap 2∆/t. Arrows: onset of normal state pseudogap.
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ring near the onset of the normal state pseudogap (in-
sets of Fig. 3), whereas the gap monotonically increases
from high to low doping or low to high interaction. We
find 2∆/Tc ∼ 7.5 − 8 in the region outside the pseudo-
gap and becoming rapidly larger within the pseudogap
regime as the endpoint of the superconducting regime is
approached, consistent with dynamical mean field calcu-
lations based on 4-site clusters [31, 42–46]. In interpret-
ing the numerical value of the gap it is important to note
that the DCA procedure, which averages over an entire
momentum sector, places the peak at a somewhat higher
energy than the true minimum excitation energy. This
difference does not affect the trends of primary interest
here.
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FIG. 4: Left panel: Imaginary part of self energy calcu-
lated for particle-hole symmetric Hubbard model at n = 1,
T = t/60 and indicated interaction strengths by directly con-
tinuing the Matsubara axis self energy. Right panel: com-
parison of frequency dependence of anomalous self energy for
4, 8, and 16-site cluster approximations computed at n = 1,
T = t/60 and U values indicated.

Further insight into the superconductivity may be ob-
tained from the imaginary part of the real-axis anomalous
self-energy obtained by maximum entropy analytical con-
tinuation as described in the supplementary material and
shown in the left panel of Fig. 4. In standard phonon-
mediated superconductivity ImΣA is peaked at frequen-
cies associated with the phonons [64]. At the weaker
coupling U = 4.6 ImΣA is spread over a range of fre-
quencies up to somewhat larger than ω = t, possibly
consistent with a spin fluctuation origin of superconduc-
tivity but as the coupling is increased the weight shifts
dramatically to lower frequencies, and for the strongest
couplings essentially all of the weight is concentrated in a
very low frequency peak. This strong coupling behavior
is highly unusual, and requires further analysis. We also
remark that our 8 and 16 site cluster calculations do not
show evidence for the contribution from higher frequency
(ω ∼ U) scales reported by Ref. [43] (see also [65]). This
conclusion is not dependent on analytical continuation: a
contribution along the lines of that reported in Ref. [43]

would lead to a Matsubara-axis anomalous self energy
which at ω ∼ 2t would be ∼ 20% of its zero frequency
value. As can be seen from the right-hand panel of Fig. 4
while in the 4-site cluster the Matsubara axis anomalous
Σ function may be different from zero for ω ∼ 2t, for the
larger clusters it clearly has decayed to zero for ω >

∼ 2t.

In summary, we have constructed the superconducting
phase and analysed its competition with the pseudogap.
We find, robustly over a range of cluster sizes, interaction
strengths and carrier concentrations, that in the Hubbard
model the superconducting and pseudogap phases com-
pete. The competition is manifested by the presence of
a pseudogapped but non-superconducting phase close to
the Mott insulator and by a dramatic change in the den-
sity of states, in particular a decrease of the gap size when
superconductivity emerges from the pseudogap state. In
addition, we find that when superconductivity and the
pseudogap coexist, the superconductivity is anomalous,
with the imaginary part of the self energies characterized
by a sharp large amplitude pole at an energy near zero.

Our results open up important new directions for re-
search. For the two dimensional Hubbard model fermion
sign and matrix size issues restrict us in practice to Nc

<
∼

16 and interaction U <
∼ 7. These values are large enough

to enable access to the doped Mott phase while access-
ing large enough cluster sizes to obtain reasonable insight
into the infinite cluster size limit. Even given these con-
straints, understanding the anomalous frequency depen-
dence of the anomalous self energy at strong coupling
and further investigation of the interplay between the
pseudogap and the superconducting gap, and investiga-
tion of two particle (e.g. Raman) spectral are feasible.
In particular the striking similarity between the physi-
cal behaviors of the doping-driven and interaction-driven
transitions shown in Fig. 3 suggests that the computa-
tionally simpler particle-hole symmetric case will provide
valuable generally valid information. Going beyond the
particle-hole symmetric case, investigations of the effect
of second neighbor coupling are important to determine
the factors optimizing Tc. Also, a significant difference
between our calculations and experiment is that we find
a larger anomalous Green function on the electron doped
side. Inclusion of long-ranged antiferromagnetism and
also extension of our results to the ‘three-band’ copper
oxide models is needed to understand these issues further.
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