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Jukka I. Väyrynen, Moshe Goldstein, and Leonid I. Glazman
Department of Physics, Yale University, New Haven, CT 06520, USA

(Dated: March 12, 2013)

We study the influence of electron puddles created by doping of a 2D topological insulator on its
helical edge conductance. A single puddle is modeled by a quantum dot tunnel-coupled to the helical
edge. It may lead to significant inelastic backscattering within the edge because of the long electron
dwelling time in the dot. We find the resulting correction to the perfect edge conductance. Gener-
alizing to multiple puddles, we assess the dependence of the helical edge resistance on temperature
and doping level, and compare it with recent experimental data.

PACS numbers: 71.10.Pm,73.63.Kv

The realization that a boundary separating a
topologically-nontrivial insulator from a conventional one
should carry delocalized electron states [1, 2] has led to
the prediction of such states in concrete materials and
their experimental observation [3–5]. One of the stunning
theoretical predictions is that in 2D the zero-temperature
electron transport along an edge is reflectionless, as long
as time-reversal symmetry is not broken, which should
lead to the quantization of the edge conductance [2]. Ex-
periments with HgTe quantum wells of the appropriate
thickness confirmed the existence of highly-conducting
channels in a nominally insulating state of a heterostruc-
ture [6–8]. The Fermi energy EF in a heterostructure was
tuned by a gate to reside in the gap between the valence
and conduction bands. The values of the conductance G
measured under these conditions were indeed close to the
predicted quantized value G0 = e2/h per edge, but only
for small ∼ 1× 1µm2 samples. Deviations ∆G ≡ G0−G
towards lower conductance values were clearly seen in
larger samples [6–11].

In short samples, ∆G fluctuated with gate voltage.
The temperature dependence of G has not been sys-
tematically measured yet, but the existing data indi-
cate it to be rather weak. These observations should
be contrasted with the theoretical predictions of a strong
T -dependence of electron inelastic backscattering rate,
with a characteristic scale set by the band gap EG. De-
pending on the model, ∆G scales as ∝ (T/EG)

6 or
(T/EG)

4, unless time-reversal symmetry is broken [2, 12–
14]. Spontaneous symmetry breaking is improbable for
weak electron-electron interaction (noting the high di-
electric constant, κ ≈ 13 [5]) and in the absence of a
high density of magnetic impurities. Luttinger liquid ef-
fects [2, 12, 14, 15] are also suppressed in short samples.

The existing theory considers inelastic electron
backscattering by either uniform interactions along an
edge [2, 15, 16], or at isolated points [2, 12, 13, 17].
Helical edges formed in a semiconductor heterostructure
are likely to deviate considerably from either limit. The
structures are doped [6–8, 10, 11]; the presence of charged
donors and acceptors results in a non-uniform potential
landscape for electrons. These inhomogeneities are not
point-like because of the long-range of the Coulomb po-
tential. Moreover, the topologically non-trivial insula-

tors are in fact narrow-gap semiconductors with a typi-
cal gap of only EG ≃ 10meV for HgTe quantum wells [6–
8, 10, 11, 18]. To place EF inside the band gap, an appro-
priate gate voltage is applied, so that the gate charge bal-
ances out the uncompensated donor (nd) or acceptor (na)
charge density. The joint effect of the gate and ionized
dopant atoms may lead to the accidental formation of
electron and hole puddles in the quantum well, cf. Fig. 1,
similar to the known phenomenon in compensated bulk
semiconductors [19]. In the existing measurements dop-
ing varied from nd ∼ 3.5 ·1011 cm−2 to na ∼ 5 ·1010 cm−2

[6–8, 10, 11], and the results indeed seem to indicate that
a lower doping level improves the quality of the edge
conductance quantization. Furthermore, the uncovered
strong sensitivity of the edge conductance to the poten-
tial of a scanning probe [10] may imply the presence of
puddles, i.e., spontaneously formed quantum dots, in the
vicinity of the edge.

In this Letter we elucidate the role of tunneling be-
tween an edge and a quantum dot on the edge conduc-
tance. Elastic processes involving electron dwelling in
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FIG. 1. (Color online) Electrons moving along a helical edge
tunnel in and out of puddles created by the inhomogeneous
charge distribution in the heterostructure. In the puddles
electrons may undergo inelastic backscattering. The main
contribution comes from puddles whose distance d from the
edge is within a strip where the resulting level width Γ ∼
T , cf. Eqs. (7)–(8). The strip width is the tunneling length
λ = v/EG. Summation over the puddles yields the average
resistivity, Eq. (12).
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the dot do not lead to any backscattering. However,
dwelling enhances the inelastic backscattering by increas-
ing the time electrons interact with each other. At T < δ,
the dwelling-time effect makes the conductance correc-
tion strongly dependent on the position of the Fermi
level EF with respect to the dot energy levels, and on
the tunneling widths Γ of these levels (δ ≪ EG is the
mean level spacing in the dot). At a given temperature
T , the tallest peaks ∆Gpeak ∝ (T/δ)2 in ∆G(EF ) are
produced by levels with elastic widths Γ ∼ T , see Eq. (8)
and Fig. 1. Such peaks in ∆G(EF ) are of widths ∼ T ,
and the “peak-to-valley” ratio is ∼ (δ/T )6.
Dots, or puddles of charge carriers in a quantum well,

are formed by fluctuations in the donor density [21, 22].
We establish a crossover value n0 of nd below which pud-
dles are rare. At nd ≪ n0 the density of puddles, np,
is exponentially small in n0/nd. In short samples of

length L . n
−1/2
p only a few puddles are in the vicin-

ity of the edge, resulting in mesoscopic fluctuations of
G with the gate voltage. This model agrees with the
results of scanning-gate experiments [10] and could ex-
plain the variations of G with back gate voltage in ear-
lier experiments [6–8], if the condition nd . n0 would

hold there. For longer samples, L ≫ n
−1/2
p , many pud-

dles couple effectively to the edge. That leads to edge
resistance, R ∝ npL(T/δ)

3, which varies smoothly with
the gate voltage and possibly greatly exceeds the quan-
tized value h/e2. At the same time, the “bulk” hopping
conductivity, which is proportional to factors exponen-

tially small in n
−1/2
p and T/δ, may still remain negligi-

ble. In this case, current would flow along the edges,
despite edge resistance being high compared to h/e2, as
observed in Ref. [11]. The model would also explain the
earlier measurements [6–9] on larger samples, if the con-
dition nd . n0 would be satisfied [our crude estimate of
n0, Eq. (10), turns out to be too low for that].
We start by considering a helical edge coupled to a

single quantum dot via a point contact. In the absence of
interactions, the corresponding Hamiltonian takes form:

Ĥ0 =− ivF
∑

γ

γ

∫

dxψ†
γ(x)∂xψγ(x) +

∑

nγ

εnc
†
nγcnγ

+
∑

n,γ

tnc
†
nγψγ(0) + H.c. (1)

Here vF is the helical edge velocity, γ = ±1 ≡ R,L labels
the right- and left-movers, respectively, and εn are the
discrete energy levels in the dot, measured from EF . The
dot is coupled to the edge at x = 0 by tunneling ampli-
tudes tn, leading to elastic level widths Γn = |tn|2/(2vF ).
The Kramers degeneracy of each level gave us the free-
dom to pick the eigenfunctions |nγ〉 such that the right-
and left-movers are coupled to two orthogonal compo-
nents of each doublet. There is thus no backscattering in
the free-electron problem. Interaction in the dot,

Û =
1

2

∑

ni,γi

Un1γ1n2γ2;n3γ3n4γ4
c†n1γ1

c†n2γ2
cn4γ4

cn3γ3
, (2)

may lead to inelastic backscattering (hereinafter, we as-

sume Û respects time-reversal symmetry).
Inelastic backscattering reduces the steady-state cur-

rent I = I0 −∆I from its ideal value I0 = G0V by

∆I = e
∑

γi

∆Nγ1γ2;γ3γ4

∫

dE1dE2dE3dE4

× Sγ1γ2;γ3γ4
(E1, E2;E3, E4)δ(E1 + E2 − E3 − E4)

×
[

f̃γ1
(E1)f̃γ2

(E2)(1 − f̃γ3
(E3))(1− f̃γ4

(E4))

− f̃γ3
(E3)f̃γ4

(E4)(1−f̃γ1
(E1))(1−f̃γ2

(E2))
]

. (3)

Here V is the source-drain voltage, ∆Nγ1γ2;γ3γ4
= (γ1 +

γ2 − γ3 − γ4)/2 counts the net number of right-movers

scattered into left-movers, f̃γi
(E) = 1/[e(E+γieV/2)/T +

1] is the Fermi function shifted by ±eV/2, and
Sγ1γ2;γ3γ4

(E1, E2;E3, E4) is the cross section for the two-
electron scattering process |E1γ1, E2γ2〉 → |E3γ3, E4γ4〉
between exact right- and left-propagating eigenstates of
the Hamiltonian (1). In general, S allows backscattering
of one (RR → LR) or two (RR → LL) electrons. There
are two respective contributions, ∆G1 and ∆G2, to the
conductance G = G0 −∆G1 −∆G2.
In the Born approximation the cross section is

Sγ1γ2;γ3γ4
(E1, E2;E3, E4) =

2

π3

∑

mi,ni

[

4
∏

i=1

ImGR
nimi

(Ei)

]

× U∗
m1γ1m2γ2;m3γ3m4γ4

Un1γ1n2γ2;n3γ3n4γ4
. (4)

Here GR
n1n2

(E) is the noninteracting retarded Green func-
tion of an electron in the dot. All interaction matrix ele-
ments must be small compared to the mean level width Γ
to allow the perturbative treatment at arbitrary position
of the Fermi level with respect to the dot levels. This con-
dition is more easily satisfied for the off-diagonal matrix
elements [20] appearing explicitly in Eq. (4), than for the
diagonal ones Un1γ1n2γ2;n1γ1n2γ2

∼ EC . The introduced
charging energy EC is small, EC ≪ δ, if the spacer be-
tween the quantum well and gate is thinner than the
Debye radius for electrons in the well. In the opposite
case of EC & δ, Coulomb blockade may develop. We
first treat the entire interaction perturbatively, and later
point out how Coulomb blockade modifies the results. We
will also see that backscattering is dominated by puddles
with Γ ∼ T ; thus Kondo correlations [17] setting in only
at the temperature TK ≪ Γ can be ignored.
Using properties of the interaction matrix elements in

Eq. (4), it is straightforward to check that in the low-
temperature limit ∆G1 ∝ T 4 and ∆G2 ∝ T 6, in agree-
ment with Refs. [2, 12–14]. For a generic form of strong
spin-orbit interaction in the dot, all interaction matrix el-
ements in Eq. (4) are of the same order [20]. In this case,
∆G2/∆G1 ≪ 1 if T ≪ δ. The proportionality coefficient
of the temperature dependence ∆G1 ∝ T 4 is a function
of the dot parameters; in the case of weak tunneling it
peaks every time a level crosses the Fermi energy.
Weak tunneling corresponds to Γn ≪ |εn − εn±1|.

Then the leading-order approximations for the diagonal
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and off-diagonal (n1 6= n2) matrix elements of ĜR(E)
read GR

nn(E) = (E − εn + iΓn)
−1 and GR

n1n2
(E) =

−i
√

Γn1
Γn2

[(E− εn1
+ iΓn1

)(E− εn2
+ iΓn2

)]−1, respec-
tively. Using this simplification in Eq. (4) we find

∆Gpeak
1

G0
=

27π

15
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T

Γ1
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∣

∣
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∑

n6=1

√

Γn

Γ1
· U1L1R;1RnR

εn
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∣
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(5)

for the peak in ∆G1 corresponding to the level ε1 cross-
ing the Fermi level (ε1 = 0). The peak height and its
width, |ε1 − EF | ∼ Γ1, display mesoscopic fluctuations;

Eq. (5) is applicable at T ≪ Γ1. The peak value ∆Gpeak
1

grows with temperature till T reaches a value T ∼ Γ1.
At higher temperatures, some of the incoming electrons
with energies |E| . T which contribute to ∆G1 are off
resonance. This leads to a decreasing T -dependence of

∆Gpeak
1 at T & Γ1,

∆Gpeak
1

G0
=

Γ1

T

∣

∣

∣

∣

∣

∣

∑

n6=1

√

Γn

Γ1
· U1L1R;1RnR

εn

∣

∣

∣

∣

∣

∣
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, (6)

and a peak width |ε1 − EF | ∼ T .
In a weakly-disordered dot the Thouless energy ET =

gδ ≫ δ (g ≫ 1 is the dimensionless conductance within
the dot). The disorder-averaged matrix elements 〈U2〉 of
interaction present in Eqs. (5) and (6) can be evaluated
using the standard diagrammatic techniques [20]. Fur-
ther simplification is possible for the screened Coulomb
interaction, which is dominated by its universal zero-
momentum component, leading to 〈U2〉 ∼ δ2/g2. Us-
ing this estimate in Eqs. (5)–(6) and dropping numerical
factors, we arrive at the interpolation

〈∆Gpeak
1 〉
G0

∼ 1

g2
T 4

Γ4
θ(Γ− T ) +

1

g2
Γ

T
θ(T − Γ) (7)

for the typical peak conductance as a function of T at
small charging energy, EC ≪ max{T,Γ}.
The backscattering processes leading to Eqs. (5) and

(6) involve a sequence of virtual states. Those with en-
ergy deficit |εn| 6= 0 are represented by the denominators
in the sums over n 6= 1. One of the virtual states, how-
ever, has two electrons on level n = 1 and brings a large
factor ∼ 1/Γ2 to Eqs. (5) and (6). It is replaced by 1/E2

C
in the presence of charging energy EC ≫ Γ. For the same
reason, the cross section Eq. (4) loses sensitivity to the
energy Ei of one of the two electrons involved. The cor-
responding integration range in Eq. (3) is then restricted
by T rather than Γ at any T/Γ. In the important (see be-
low) case EC ∼ δ, the two modifications change Eq. (7)
by a factor ∼ (Γ/δ)2 ·max{1, T/Γ}, leading to:

〈∆Gpeak
1 〉
G0

∼ 1

g2
T 4

Γ2δ2
θ(Γ− T ) +

1

g2
Γ2

δ2
θ(T − Γ) . (8)

Backscattering in the“valley” (Fermi level in between two
subsequent dot levels) regime does not involve any low-
energy virtual state and is not affected qualitatively by

EC ∼ δ. The corresponding estimate, 〈∆Gvalley
1 〉/G0 ∼

T 4Γ4/g2δ8 is smaller than the peak value Eq. (8) by a
factor ∼ (Γ2/δ6) ·max{Γ4, T 4}.
The main contribution to the backscattering correc-

tion averaged over the position of the Fermi level comes

from the peak values, Eq. (8), as 〈∆Gvalley
1 〉/G0 is para-

metrically smaller. Accounting for the peak widths,
|εi − EF | ∼ max{Γ, T }, we find

〈∆Gav
1 〉

G0
∼ 1

g2
T 4

Γδ3
θ(Γ− T ) +

1

g2
Γ2T

δ3
θ(T − Γ) . (9)

At higher temperatures the above mechanism gives
way to thermally-activated backscattering processes.
Those originate from the diagonal elements GR

nn(E) in
Eq. (4) only. Since this regime is probably not relevant
for the interpretation of existing experiments (see below)
we only sketch the results, deferring a detailed discus-
sion [23]. There are two types of activated contributions
to ∆G. The first one involves transitions within a pair
of levels, {n3, n4} = {n1, n2}. The other one involves
more levels, {n3, n4} 6= {n1, n2}, and gains importance
at higher temperatures (T ≫ δ) due to the larger phase
space available for transitions. At T . δ, backscatter-
ing is dominated by the two levels closest to EF , and
∆G ∼ (δ2/g2ΓT ) ·exp(−ε/T ) with ε ∼ δ. Comparison
with Eq. (9) shows that activated backscattering exceeds

〈∆Gpeak
1 〉 at T & δ/ ln(δ/Γ). The distinction between

peaks and valleys is lost at these temperatures, although
∆G does experience strong mesoscopic fluctuations at
T ∼ δ due to the randomness of the activation energy ε.
Now we turn to the typical experimental case [6–9, 18]

of a doped, gate-controlled heterostructure. Donors of
density nd are confined to a plane between the quantum
well and the gate, and separated from the two by dis-
tances ℓd and ℓg−ℓd, respectively. In the absence of carri-
ers, the random potential [21] of donors V (r) has variance
〈V 2〉 = V 2

0 ln{ℓ2g/[(2ℓg− ℓd)ℓd]} with V0 =
√
2πnde

2/κ (κ
is the dielectric constant). At the point of full depletion
(the gate charge density is −end) the probability of cre-
ation of electron and hole puddles depends on the ratio
EG/(2

√

〈V 2〉). The relation
√

〈V 2〉 = EG/2 defines a
characteristic donor density,

n0 =
E2

Gκ
2

8πe4 ln{ℓ2g/[(2ℓg − ℓd)ℓd]}
. (10)

At nd ≪ n0, the carrier puddles are small and rare.
In the opposite limit (nd ≫ n0), puddles are large
and separated by p-n junctions of typical [24] thickness
EG/|∇V (r)|. The junctions are thin compared to the
electron penetration depth λ ∼ v/EG (here v is the
electron velocity at EF ≫ EG/2) and therefore trans-
parent, Γ & δ; the corresponding average bulk conduc-
tivity σbulk & e2/h. Analysis [25] suggests a transi-
tion from the topological insulator to conductor state at
σbulk ≈ (1.4 − 2.5)e2/h. This makes the limit nd ≫ n0

unfavorable for the helical edge conductance quantization
at any temperature.
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In the opposite limit, nd ≪ n0, the puddles are sparse
if the electron chemical potential is in the band gap,
away by & V0 from the band edges [21]. At α ≪ 1
[α = e2/(κ~v) is the interaction parameter], we describe
a puddle in the Thomas-Fermi approximation. The pud-
dle size w is found by matching its number of electrons
N and electrochemical potential N/(2m∗w2) to the typi-

cal impurity charge fluctuation N ∼ wn
1/2
d and potential

fluctuation V0, respectively [m∗ = EG/2v
2 is the effective

electron mass]. This leads to w ∼ aB and

EC ∼ δ ∼ α2EG ; g ∼ (nd/n0)
1/4
/(2π)1/4α . (11)

Here aB = 2~v/αEG is the effective Bohr radius; we

used the estimates δ ∼ V0/N , g ∼
√
N [20], and EC ∼

e2/(κw) [assuming w . ℓg]. We also assume nda
2
B ≫ 1,

justifying the Thomas-Fermi approximation [21]. Pud-
dles are located at rare strong fluctuations of the poten-
tial, and are thus far away from each other. Their density
np is estimated as the ratio of the total carrier density

to the number N ∼ aBn
1/2
d of electrons in a puddle. To

find the former quantity we note that the distance to the
gate ℓg serves as screening length for the potential fluc-
tuations; hence we can divide the sample into roughly
independent regions of size ℓg. A region becomes popu-
lated by carriers only if the local potential experiences an
exponentially rare fluctuation exceeding EG/2. The car-
rier number is such that they compensate for the fluctua-
tion [21]. This leads to np ∼ 1/(ℓgaB)(nd/n0)

1/2e−n0/nd .
The hopping conductivity facilitated by the puddles is

proportional to a product of two small parameters: the
tunneling probability, exponential in −(λ2np)

−1/2; and
the thermal activation probability, exponential in −δ/T .
The latter one remains small at T ≪ δ, even when ap-
proaching the crossover region nd . n0. Under the same
conditions, the rate of backscattering into the helical edge
scales as a relatively low power of T/δ, cf. Eqs. (8)–(9).

For samples of length L . n
−1/2
p only a few puddles oc-

cur in the vicinity of the edge. That would make ∆G
sensitive to a local probe potential, consistent with re-
cent scanning gate measurements [10], and may also pro-
vide an explanation for the mesoscopic fluctuations of
∆G(EF ) in earlier measurements [6–8, 10]. Eq. (8) pre-
dicts that the largest peaks in ∆G(EF ) at a given T scale
as (T/δ)2 and are produced by levels with Γ ∼ T . For

L ≫ n
−1/2
p contributions of many puddles add up inco-

herently, as scattering off each puddle is inelastic. The
exponential dependence of the level widths Γ ∝ e−2d/λ

on the distance d between a puddle and the edge leads to
a broad distribution of Γ. Hence, by Eq. (9), backscat-

tering will be dominated by puddles whose distance from
the edge is such that Γ ∼ T . Summing over puddles
(see Fig. 1), we find that a long edge displays resistance
R = ρedgeL with self-averaging resistivity

ρedge ∼
1

G0

1

g2
npλ

(

T

δ

)3

. (12)

While ρedge ∝ (T/δ)3, the quantum well hopping con-
ductivity σbulk is exponentially small in δ/T . There-
fore, leakage into the bulk at nd . n0 is insignificant
for samples shorter than the exponentially-large ”leakage
length” L∗ = 1/(σbulkρedge), which may explain recent
scanning SQUID results [11].

Our findings thus match with observations provided
that nd . n0 and T ≪ δ. To estimate δ for a HgTe/CdTe
heterostructure, we use Eq. (11) with EG = 10meV and
α ≈ 0.32 (found with κ ≈ 13 and v = 5.5 ·107cm/sec [5]).
We arrive at δ ≈ 1meV, comfortably above kBT in most
experiments. For the crossover density, Eq. (10), we find
n0 ≈ 3·1010cm−2. The doping levels reported in Ref. [10]
and in [6–8] are, respectively, moderate (na/n0 ∼ 1) and
high (nd/n0 ∼ 10) with respect to this value. On the
other hand, from the total resistance of long samples in
Ref. [6] we deduce that σbulk . 0.45G0, consistent with
an insulating bulk [25]. It may mean that our crude
estimate of n0 is off by a factor of 10. The characteristic

length n
−1/2
p , separating mesoscopic samples from the

”self-averaging” ones, provides another check. The pre-
exponential factor in it, ∼ 100nm, is only ∼ 10 times
shorter than 1µm-long “mesoscopic” samples in Refs. [6–
8]. That too may indicate that the samples doping was
close to the true crossover value n0.

To conclude, disorder in a doped heterostructure may
lead to appreciable backscattering within a helical edge,
while hopping conductivity in the quantum well remains
negligible. It may explain some of the experiments [6–
8, 10, 11]. The samples doping level nd was too close
to the crossover value Eq. (10) to allow a reliable anal-
ysis of the edge resistance dependence on nd. On the
other hand, robust qualitative features of the resistance
T -dependence, in both the mesoscopic and self-averaging
regimes, Eqs. (8)–(9) and (12), make its detailed mea-
surement very desirable.

We thank D. Goldhaber-Gordon, K. Moler, and K.
Nowack for stimulating discussions, and C. Varma for his
request to write for the Journal Club for Condensed Mat-
ter Physics, which partially motivated this study. This
work was supported by NSF DMR Grant No. 1206612,
the Simons Foundation, and the Bikura (FIRST) pro-
gram of the Israel Academy of Science.

[1] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802
(2005).

[2] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801
(2005).

[3] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science
314, 1757 (2006).

[4] C. L. Kane and M. Z. Hasan, Rev. Mod. Phys. 82, 3045
(2010).



5

[5] X.-L Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

[6] M. König et al., Science 318, 766 (2007).
[7] M. König et al., J. Phys. Soc. Jpn. 77, 031007 (2008).
[8] A. Roth et al., Science 325, 294 (2009).
[9] G. M. Gusev et al., Phys. Rev. B 84, 121302(R) (2011).

[10] M. König et al., arXiv:1211.3917.
[11] K. C. Nowack et al., arXiv:1212.2203.
[12] C. Xu and J. E. Moore, Phys. Rev. B 73, 045322 (2006).
[13] T. L. Schmidt, S. Rachel, F. von Oppen, and L. I. Glaz-

man, Phys. Rev. Lett. 108, 156402 (2012).
[14] N. Lezmy, Y. Oreg, and M. Berkooz, Phys. Rev. B 85,

235304 (2012).
[15] Anders Ström, Henrik Johannesson, and G. I. Japaridze,

Phys. Rev. Lett. 104, 256804 (2010).
[16] J. C. Budich, F. Dolcini, P. Recher, and B. Trauzettel,

Phys. Rev. Lett. 108, 086602 (2012).
[17] J. Maciejko et al., Phys. Rev. Lett. 102, 256803 (2009);

Y. Tanaka, A. Furusaki, and K. A. Matveev, Phys. Rev.

Lett. 106, 236402 (2011).
[18] E. G. Novik et al., Phys. Rev. B 72, 035321 (2005).
[19] A. L. Efros, and B. I. Shklovskii, Electronic Properties

of Doped Semiconductors (Springer-Verlag, New York,
1984).

[20] I. L. Aleiner, P. W. Brouwer, and L. I. Glazman, Phys.
Rep. 358, 309 (2002).

[21] V. A. Gergel’ and R. A. Suris, Zh. Eksp. Teor. Fiz. 75,
191 (1978) [Sov. Phys. JETP 48, 95 (1978)].

[22] A. L. Efros, F. G. Pikus, and V. G. Burnett, Phys. Rev.
B 47, 2233 (1993).
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