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The negative-mass instability (NMI), previously found in ion traps, appears as a distinct regime of
the sideband instability in nonlinear plasma waves with trapped particles. As the bounce frequency
of these particles decreases with the bounce action, bunching can occur if the action distribution
is inverted in trapping islands. In contrast to existing theories that also infer instabilities from the
anharmonicity of bounce oscillations, spatial periodicity of the islands turns out to be unimportant,
and the particle distribution can be unstable even if it is flat at the resonance. An analytical model
is proposed that describes both single traps and periodic nonlinear waves and concisely generalizes
the conventional description of the sideband instability in plasma waves. The theoretical results are
supported by particle-in-cell simulations carried out for a regime accentuating the NMI effect.
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Introduction. — It is well known that bounce oscilla-
tions of particles autoresonantly trapped in a wave can
couple to wave sidebands, rendering them unstable [1–3].
The sideband instability (SI) was extensively studied in
the past [4–8], more recently in application to free elec-
tron lasers [9] and storage rings [10], and now is attracting
renewed attention [11, 12] in the context of intense laser-
plasma interactions (LPI) and the associated trapped-
particle modulational instability (TPMI) [13], which is
the SI’s geometrical-optics limit [14]. Yet little effort
was paid to unifying SI theories that appeared after the
original Kruer-Dawson-Sudan work [1], further termed
KDS. As a consequence, their results are often neglected
today, and that, in turn, leads to misapplications [15].
Thus, even though quantitative predictions may be bet-
ter left to simulations in any case, a transparent theory
is needed, particularly as a practical tool for interpreting
LPI-related numerical data, that would both comprehen-
sively capture and elucidate the SI paradigmatic physics.

Here we propose such a theory for Bernstein-Greene-
Kruskal (BGK) waves [16], paradigmatic in the LPI
context, in one-dimensional (1D) electron collisionless
plasma. We identify a new mechanism of the SI, which
is additional to that implied in KDS. We call this mech-
anism a negative-mass instability (NMI), because of its
resemblance to the NMI in accelerators and storage rings
[17]. The NMI is not limited to periodic waves and thus
can be treated also as an extension of the bunching in-
stability recently found in ion traps [18]. Our analytical
model describes both single traps and periodic nonlin-
ear waves and represents a transparent generalization of
KDS, reproducing the latter as a limit. In contrast to
existing theories that also relate the SI to anharmonicity
of bounce oscillations, in the NMI theory, the particle
distribution can be unstable even if it is flat at the reso-
nance. Below, we present our theory in detail and sup-
port it with results of particle-in-cell (PIC) simulations
for a regime accentuating the NMI effect.

Physical mechanism.— For transparency, we will limit
our consideration to waves that are initially phase-mixed,
so the initial trapped population can be characterized by
the distribution F (J) of the particle bounce actions, J .
(As proved fruitful by Refs. [14, 19–21], finding F (J) is
treated as an independent problem, not to be addressed
here; but see Refs. [19, 21].) Even in this case, side-
bands are subjected to a whole zoo of instabilities, for
which SI serves merely as an umbrella term. A variety
of regimes is exhibited already by the KDS model [3],
which assumes F (J) = δ(J). These instabilities feed on
the free energy stored in the trapped-particle motion at
the wave phase velocity, ū, much like the usual bump-
on-tail instability. On the other hand, the distribution
inside trapping islands can also become unstable by it-
self, if F (J) is inverted (which occurs naturally [22]) and
if the bounce frequency, Ω, is a decreasing function of J
(which is typical). The specific mechanism is as follows.

Consider a pair of particles bouncing in the wave po-
tential, i.e., rotating in phase space around a local equi-
librium. Through Coulomb repulsion (strictly speaking,
via collective fields), the leading particle increases its en-
ergy; then it moves to an outer phase orbit and slows
down its phase space rotation (as Ω′ < 0), whereas the
trailing particle moves to a lower orbit and speeds up,
correspondingly. This way, mutually repelling particles
can undergo phase-bunching, or condensation, as if they
had negative masses [23]. The condensation may or may
not eventually saturate in the form of a stable “macropar-
ticle” [24]; yet, its very formation, which one may ex-
pect to be a generic feature of ring-shaped distributions,
constitutes a fundamental instability in itself, missed in
KDS. We adopt the term NMI to refer to this distinct
regime of the SI, by analogy with the well-known bunch-
ing mechanism for particles rotating in accelerators and
storage rings [17]. A subtle difference, however, is that in
our case particles rotate in phase space, so what deter-
mines the instability is the canonical frequency Ω rather
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than a physical angular velocity.

Clearly, the bunching mechanism applies to single
traps too, thus bridging the SI with a similar instability
found in ion traps [18]. To our knowledge, a Vlasov the-
ory of the ion-trap NMI does not exist, so it is worth con-
sidering the two instabilities together, drawing on their
similarity. As will be seen, this approach is different from
both “parametric” theories [1–5], which deduce the SI
from mode coupling, and “quasilinear” theories [6], which
treat sidebands as independent harmonics and infer the
SI as their inverse Landau damping on a nonlinearly-
perturbed slow part of the velocity distribution.

Single trap.— Let us first consider a single trap absent
bulk plasma. Suppose a given 1D static potential well,
U(x), which causes an individual particle to oscillate at
some nonlinear frequency, θ̇ = Ω(J); here (J, θ) ≡ Γ
are the corresponding action-angle variables. When mul-
tiple particles are placed in the same well, their oscil-
lations become perturbed by the collective electrostatic
potential, φ. For clarity, we will consider only pertur-
bations along the x axis, so the transverse dynamics
is decoupled and need not be considered below. The
individual-particle Hamiltonian can then be written as

H =
∫ J

0
Ω(J ′) dJ ′ + eφ(x, t), where e is the charge, and

x is now understood as a function of the phase-space
coordinates, x = X(Γ). Absent collisions, the particle
distribution f(Γ, t) is governed by the Vlasov equation,

∂f

∂t
+

(

Ω+ e
∂φ

∂J

)

∂f

∂θ
− e

∂φ

∂θ

∂f

∂J
= 0, (1)

somewhat unusual as the electrostatic force is now for-
mally a function of both coordinate and momentum. The
corresponding Poisson’s equation then can be written as

∂2φ

∂x2
= −4πeNt

∫

Γ

dΓ δ(x−X(Γ)) f(Γ), (2)

where Nt is the average number of particles per unit sur-
face transverse to the x axis,

∫

Γ
dΓ f(Γ) = 1,

∫

Γ
dΓ

.
=

∫

∞

0
dJ

∫ +π

−π dθ, and the symbol
.
= denotes definitions.

Let us search for a solution in the form f = f̄(J) +
Re f̃(Γ) e−iωt, where f̃ =

∑

m f̃m(J) eimθ ≪ f̄ , and

φ = φ̄(x) + Re φ̃(X(Γ)) e−iωt. The static part of the
potential, φ̄, is determined by f̄ and can be eliminated
by redefining U(x). Correspondingly, φ̃ is determined by
f̃ , which contains no net charge,

∫

Γ
dΓ f̃(Γ, t) = 0; thus

the quiver field, Ẽ
.
= −∂φ̃/∂x, vanishes at x → ±∞. We

will assume that U(x) is even and the phase is defined
such that the sign of cos θ matches that of X . This gives
∫

∞

0
δ(x − X(Γ)) dx = H(cos θ), where H is the Heavi-

side step function; hence, integrating Eq. (2) over x from

zero to infinity yields E = −4πeNt

∫

∞

0
dJ

∫ +π/2

−π/2
dθ f̃(Γ),

where E .
= Ẽ(x = 0). From the linearized Eq. (1), we

have f̃m = −emφ̃m f̄ ′/(ω −mΩ), and thus

E = 8πe2Nt

∑

m

sin
(πm

2

)

∫

∞

0

φ̃m(J)f̄ ′(J)

ω −mΩ(J)
dJ. (3)

The integration contour can be taken along the real axis
in J space if γ

.
= Imω > 0 but otherwise must be under-

stood as a Landau contour in the J complex plane.
To simplify the right-hand side in Eq. (3), let us use

φ̃m(J) =
∫ +π

−π
φ̃(X(Γ)) e−imθ dθ/(2π) and replace the po-

tential with its Taylor series, φ̃(x) =
∑

∞

ℓ=0
qℓx

ℓ; in par-
ticular, q1 = −E . We will assume that oscillations are
close to linear, with some constant frequency Ω0; hence
X(Γ) ≈ A cos θ, where A = [2J/(MΩ0)]

1/2, and M is
the particle mass. Then, φ̃m = −(δm,1 + δm,−1)AE/2,
and Eq. (3) yields the following dispersion relation:

1 + 2ω2
t

√

J0

∫

∞

0

F ′(J)
√
J

ω2 − Ω2(J)
dJ = 0. (4)

Here we replaced Ω(J) with Ω0 in the numerator and
defined F (J)

.
= 2πf̄(J), so

∫

∞

0
F (J) dJ = 1. Also, x0 is

the maximum amplitude of the unperturbed oscillations,
so J0

.
= MΩ0x

2
0/2 is their maximum action [i.e., f̄(J >

J0) = 0]; n̄t
.
= Nt/(2x0) is the trapped-particle average

density; ω̄t
.
= (4πn̄te

2/M)1/2 is the characteristic plasma
frequency, and we introduced ωt

.
= ω̄t(2/π)

1/2.
Suppose a ring distribution, F (J) = δ(J − J0). For

harmonic bounce oscillations [Ω(J) = Ω0], Eq. (4) yields
ω2 = Ω2

0 + ω2
t ; this is understood, because then ωt hap-

pens to equal the local plasma frequency at x = 0,
which must also be the eigenfrequency at vanishing Ω0.
Consider now nonzero α

.
= −Ω′(J0)J0/Ω0. In this

case, Eq. (4) rewrites as w2 − βw + 4αβ = 0, where
w

.
= (ω/Ω0)

2 − 1 and β
.
= ω2

t /Ω
2
0. We will assume α ≪ 1

and β ≪ 1, implying φ ≪ U [3]; yet, for simplicity, we
will also adopt b

.
= β/(16α) ≪ 1, so there are very few

trapped particles. Then w ≈ β/2± 2(−αβ)1/2, and thus
ω ≈ Ω0 + δω±ωt(−α)1/2, where δω = ω2

t /(4Ω0). Hence,
having α > 0, which corresponds to Ω′ < 0, leads to an
instability with γ ≈ ωtα

1/2. This is the NMI cold limit.
Clearly, a nonzero width of the distribution, JT , cor-

responding to the thermal spread of natural frequencies
∆Ω ∼ Ω′JT , cannot affect the growth rate if ∆Ω ≪ γ.
(The effect on the real frequency shift is insignificant, as
δω ≪ γ.) The latter rewrites as J2

T /J
2
0 . 16b, so it can be

satisfied even at JT ∼ J0 due to the large numerical coef-
ficient on the right-hand side. Thus, except at too small
b, Eq. (4) yields γ ∼ ωtα

1/2 for almost any inverted F (J),
and it does not matter what part of the distribution real-
izes the exact resonance, Ω(J) = Ω0+δω. One can as well
ascertain this numerically or by recalculating the disper-
sion relation for test cases such as a Gaussian or rectan-
gular distribution, F (J) = H(J0−J)H(J−J0+JT )/JT .
Periodic BGK wave. — Now consider a sinusoidal

BGK wave with amplitude Ē, wave number k̄ ≡ 2π/λ̄,
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and nonlinear frequency ω̄(k̄, Ē) [19, 21]. In the frame
traveling at (nonrelativistic) velocity ū = ω̄/k̄, the
medium is periodic and stationary, so any perturba-
tion with a well defined frequency ω′ is a Bloch-Floquet
wave. In particular, the charge density becomes ρ̃ =
e−iω′t+ik′x′ ∑

ℓ ρ̃ℓ e
iℓk̄x′

, where x′ = x − ūt, ℓ hereupon
spans from −∞ to +∞, and the constant k′ is a quasi-
wavevector, which is restricted to the first Brillouin zone;
i.e., κ

.
= k′/k̄ satisfies |κ| < 1/2. In terms of x and

t, this gives ρ̃ =
∑

ℓ ρ̃ℓ e
−iωℓt+ikℓx, where ωℓ

.
= ω + ℓω̄,

kℓ
.
= k + ℓk̄, ω

.
= ω′ + k′ū, and k

.
= k′. Gauss’s law

yields then Ẽℓ = 4πρ̃ℓ/(ikℓǫℓ), where ǫℓ
.
= ǫ(ωℓ, kℓ) =

ǫ(ω′ + (ℓ+ κ)ω̄, (ℓ+ κ)k̄). As in Ref. [1], we assume that
the bulk plasma response is modeled with a linear dielec-
tric function, say, ǫ(ω, k) ≈ 1 − ω2

p/(ω
2 − 3k2v2T ), where

ωp
.
= (4πne2/M)1/2, n is the bulk electron density, vT is

the electron thermal speed, and κ

.
= k̄vT /ωp ≪ 1.

Now use ρ̃ℓ = L−1
∫

dx′ρ̃(x′, t) eiω
′t−ikℓx

′

, where L is

the plasma length, and substitute ρ̃ =
∑

j rje
−iω′t, where

rj = eNt [
∫

Γ
dΓ δ(x′ − jλ̄ − X(Γ)) f̃(Γ)]j are the contri-

butions of individual islands, and f̃ can be taken from
the single-trap problem. We will assume again that most
significant are oscillations near the trapping-island cen-
ter, so kℓX(Γ) ≪ 1. (This overestimates the contribu-
tion of high-ℓ harmonics, but see below.) A straight-
forward calculation yields then ρ̃ℓ = −(ikℓ/4π) ω̄

2
tJA.

Here ω̄t
.
= (4πn̄te

2/M)1/2, like before, with the av-
erage trapped density being n̄t = Nt/λ̄; also, J .

=
∫ J∗

0
dJ JF ′(J)/[ω′2 − Ω2(J)], J∗ is the separatrix action

[so F (J > J∗) = 0], and A = (λ̄/L)
∑

j Eje−ikℓjλ̄, where

Ej = Ẽ(x = jλ̄). Using Gauss’s law, we hence arrive at

Ẽℓ = −ω̄2
tJA/ǫℓ. On the other hand, Ej =

∑

ℓ′ Ẽℓ′e
ik

ℓ′
jλ̄

yields A =
∑

ℓ′ Ẽℓ′ , which does not depend on ℓ. Sum-
ming over all relevant ℓ then leads to

1 +
ω̄2
t

ǫeff

∫ J∗

0

JF ′(J)

(ω − kū)2 − Ω2(J)
dJ = 0, (5)

where 1/ǫeff
.
=

∑

ℓ 1/ǫ(ωℓ, kℓ). As a side note, the ampli-

tude of individual harmonics is thereby locked (ǫℓẼℓ =
const). This means, contrary to a popular misconcep-
tion, that a sideband wave with well-defined ω and k
has neither a single frequency nor a single wavevector,
but rather consists of multiple harmonics with different
(ωℓ, kℓ); in particular, all of them have identical growth
rates, Imωℓ = Imω ≡ γ, and similarly for Im kℓ.
Absent plasma, the number of harmonics contributing

to ǫeff is about λ̄/x0; then Eq. (4) is recovered, at least
qualitatively. Plasma, in contrast, accentuates harmonics
with small ǫℓ, which is realized (assuming that nonlinear
effects are weak, so ω′ ≪ ω̄) at (ℓ+ κ)ω̄ ≈ ±ωp. Since ω̄
is itself close to ±ωp, that requires small κ and ℓ = ±1.
Following KDS, we retain only these resonant terms, so

1/ǫeff = 1/ǫ(ω − ω̄, k − k̄) + 1/ǫ(ω + ω̄, k + k̄). (6)

If one redefines ω and k according to the (less symmetric)
notation adopted in Ref. [1], the KDS result is hence
reproduced from Eq. (5) as a limiting case corresponding
to Ω′(J) = 0, through integration by parts. [That being
said, realistic Ω′(J) is nonnegligible even at zero J , so
KDS is not the universal cold limit here; the shape of
F (J) matters even when its width is vanishingly small.]
Contrary to Ref. [2], the stationary-wave dispersion,

ω̄(k̄, Ē), need not be derived separately, for it is already
contained in the model as a limit. Since α ≪ 1 is as-
sumed, substituting ω′ = 0 and k′ = 0 into Eqs. (5) and
(6) yields, within the accuracy that we have adopted,

ǫ(ω̄, k̄) + 2ω̄2
t /Ω

2
0 ≈ 0, (7)

in agreement with the adiabatic theory [19]. This com-
pletes the set of equations [Eqs. (5)-(7)] generalizing the
KDS model. The growth rate that flows from those is de-
termined by both the KDS effect, yet quantitatively mod-
ified now because of non-constant Ω(J), and the NMI. As
the NMI remains a cold instability, its rate is primarily
determined by the integral principal value, so a wave can
be unstable even if F (J) is flat at the resonance. This,
in particular, leads to a very different γ than the one
that Ref. [5] attributes [25] to the resonance pole in an
equation resembling Eq. (5). Below, we discuss results of
numerical simulations that support our predictions.
Numerical results. — To illustrate the NMI and un-

ambiguously validate the difference between our Eq. (5)
and KDS (rather than to mimic a specific experiment),
we performed 1D PIC simulations under conditions that
controllably accentuate these effects. A self-consistent
phase-mixed electron plasma wave was seeded, with ions
modeled as a homogeneous background. We then em-
ulated [26] plasma compression perpendicularly to the
wavevector. During this compression, n̄t/n ≡ τ , k̄, and
vT remain fixed, but ω̄ ∼ ωp(t) grows as N1/2, where
N

.
= n(t)/n0. (The index 0 hereupon denotes initial val-

ues.) Electrons that were trapped initially are then ac-
celerated such that their average velocity remains equal
to ū(t), so the trapping island detaches from the bulk
distribution. The wave electrostatic energy density, W ,
is adiabatically amplified through compression and then
decays, as explained in Ref. [27]. Here we are interested
in only the initial stage, when W grows; each trapped
particle then preserves its J , but J/J∗(t) decreases, so a
deeply-trapped ring-shaped distribution is formed.
Specifically, we start out with κ0 ≈ 0.26, τ0 ≈ 6×10−4,

and [n̄tmū2/(4W)]0 ≈ 0.29. As we use periodic bound-
ary conditions, only k = 2πp/L is allowed, where p is
integer; then, |κ| < 1/2 leads to |p| < k̄L/(4π). We oper-
ate at the lowest spatial mode (λ̄ = L), so the inequality
becomes |p| < 1/2, and, for integer p, this means p = 0;
i.e., κ = 0. (Although the quasi-wavevector is zero in this
case, the perturbation, being a Bloch wave, yet contains
spatial harmonics with wavevectors ℓk̄.) Under these
conditions, the KDS model predicts zero γ (and so does
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FIG. 1: (Color online) (a) Electrostatic energy density, W(t), averaged over the simulation box. (b) Fourier spectrum of
δW(t)

.
= W − 〈W〉 on the time interval 1700 ≤ ωp0t ≤ 2400; here 〈W〉 is the moving time-average. The peak is at the

characteristic Ω, almost constant near the peak 〈W〉. (c) Gray is a close-up of (a) in logarithmic scale; red is an exponential
fitting corresponding to γ = 0.006ωp0. (d)-(g) Consecutive snapshots of the trapped-particle phase space illustrating bunch
formation (the passing distribution, not shown, is beyond the figure limits). Arbitrary units; the index 0 denotes initial values.

Ref. [5]), but sideband amplification from noise is never-
theless observed [Fig. 1(a)]. Quantitative assessment of
the instability is hindered by the fact that the plasma
is nonstationary. Still, the inferred characteristic values,
ω/ωp0 ≈ 0.25 and γ/ωp0 ≈ 0.006 [Fig. 1(b) and (c)],
agree with the theory (which predicts ω/ωp0 ∼ 0.2 and
γ/ωp0 ∼ 0.01 throughout the whole process), and phase
bunching is observed indeed [Fig. 1(d)-(g)]. We also the-
oretically calculated ω for realistic F (J) at the specific t
when W is at its maximum (W/W0 ≈ 5, N ≈ 5.4). Both
the real and imaginary parts of ω inferred from Eqs. (5)
and (6) match the observed values within a few percent.

Discussion. — As the domain of certain quantitative
validity for our theory is limited to particles trapped at
orbits deeper than in the numerical example above, the
high precision with which the theory matches our sim-
ulations may be, to some extent, accidental. What is
actually important, however, is that we have been able
to predict correctly the qualitative dynamics observed in
ab initio simulations. This means that our theory ade-
quately describes the leading-order thermal effects in the
SI and thus can be used as an advancement of KDS,
whether or not the NMI is present. This responds to the
long-standing need for a transparent theory that would
permit analyzing the effect of the trapped-particle dis-
tribution on the SI, at least partially, rather than solely
relying on simulations or precariously ascribing to KDS
the generality that the latter cannot possess in principle
(see also Ref. [14]), as is often done in literature.

In particular, on the score of our theory being trans-
parent, we have been able to identify a new mechanism
of the SI, which is additional to that implied by KDS,
and which we term NMI because of the resemblance to
the NMI in accelerators and storage rings. This insta-
bility is caused by phase-bunching of particles bounc-
ing within trapping islands. Contrary to existing theo-

ries that also infer BGK-wave instability from the anhar-
monicity of bounce oscillations, spatial periodicity of the
islands turns out to be unimportant for the NMI, and
the particle distribution can be unstable even if it is flat
at the resonance. An analytical model is proposed which
describes both periodic nonlinear waves, thus generaliz-
ing KDS, and also single trapping islands, thus relating
the SI to a similar instability recently found in ion traps.
The theoretical results are supported by PIC simulations
carried out for a regime accentuating the NMI effect.
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