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Finite-time transport between distinct flow regions is of great relevance to many scientific ap-
plications, yet quantitative studies remain scarce to date. The primary obstacle is computing the
evolution of material volumes, which is often infeasible due to extreme interfacial stretching. We
present a framework for describing and computing finite-time transport in n-dimensional (chaotic)
volume-preserving flows that relies on the reduced dynamics of an (n — 2)-dimensional “minimal
set” of fundamental trajectories. This approach has essential advantages over existing methods:
the regions between which transport is investigated can be arbitrarily specified; no knowledge of
the flow outside the finite transport interval is needed; and computational effort is substantially
reduced. We demonstrate our framework in 2D for an industrial mixing device.

Introduction—Lagrangian transport, in its most gen-
eral sense, consists of the transfer of material from one
region to another over time. It is of fundamental impor-
tance to a wide variety of scientific and engineering disci-
plines, including fluid dynamics [1, 2], chemical kinetics
[3], heat transfer [4], and plasma confinement [5]. Here
we focus on volume-preserving flows, which include com-
pressible steady flows, incompressible (un)steady flows,
magneto-hydrodynamic representations of plasmas, and
all Hamiltonian flows. Transport in such flows is no-
toriously difficult to quantify, particularly in the pres-
ence of chaos. Methods exist for computing transport
across boundaries of approximately invariant flow regions
of steady or periodic systems [6-10], but these fail in the
presence of aperiodic time dependence. Recent studies
of aperiodic systems give new techniques for identify-
ing finite-time coherent sets [11-14], but few quantify
transport between them [15-18]. A generic framework
for computing transport was proposed in [19, 20], but
was restricted to the case of transitory flows, i.e., two
autonomous flow states connected by a time-dependent
transition. Notwithstanding these efforts, describing and
computing finite-time transport in general aperiodic sys-
tems remains largely an open problem.

The primary obstacle is the enormous cost of comput-
ing the required trajectories. An initial material volume
deforms under the action of a dynamical system, and a
Lagrangian transport analysis consists of characterizing
its evolution with respect to a second distinct region at
some later time (see Fig. 1). In chaotic flows, the initial
region typically stretches exponentially fast as it evolves,
resulting in a rapid growth of the number of trajectories
required to track it [21, 22]. Computing these trajectories
can be costly, especially in multi-dimensional systems,
making associated transport computations extremely ex-
pensive or, in some cases, precluding them altogether.

Here we present a general framework for describ-
ing and computing finite-time transport in (chaotic)
n-dimensional volume-preserving flows. Our technique
minimizes the number of required trajectories, thereby
greatly reducing the computational effort compared to

existing methods. It is also independent of any infinite-
time asymptotic quantities (e.g., hyperbolic manifolds or
elliptic islands); only knowledge of the dynamics inside
the finite transport interval is required. Moreover, the re-
gions between which transport is computed can be spec-
ified arbitrarily. These qualities greatly extend the scope
of our framework compared to existing methods, enabling
an analysis of transport (i) in systems known only for fi-
nite time and (ii) distinct from measures of mixing by
chaotic advection.

Finite-Time  Transport—Finite-time transport in
“transitory” volume-preserving flows was computed in
[19, 20]; however, these methods relied on the steadiness
of the flow outside the compact transport interval itself,
and this precluded application to systems known only
for finite time. In addition the initial and final transport
regions were assumed invariant under the steady flow.
Here, we remove these restrictions, providing a general
framework for the computation of finite-time transport
in any volume-preserving flow.

Let ¢ be a volume-preserving flow on an n-dimensional
(nD) phase space M and a finite-time interval T = [0, 7].
In particular, the associated vector field V' is also volume-
preserving, with V-V = 0 with respect to a volume form
Q). We consider the problem of computing the volume ®
of the set of trajectories transported from a region Py to a
region F, (see Fig. 1 for the case n = 2). The subscripts
denote time-slices of orbits in the extended phase space
M x T} e.g. Pr denotes the evolution of Py under ¢ from
t =0 to t = 7. We assume that the boundaries 9Py and
OF, are known explicitly.

Assuming that Q = do is exact on M (e.g., Q@ = dz1 A
dzy ... Ndx, and o = z1dza A ... Adx, for M C R™) and
defining R, = P> N F-, the total transported volume is

<I>=V01(RT):/RTQ=/8R704, (1)

by Stokes’s Theorem. Thus, computing finite-time trans-
port amounts to computing the integral of the (n — 1)-
form « along the boundary of the intersection set R,.
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FIG. 1. The lobe R, (shaded) comprises the Lagrangian transport
from Py at ¢ = 0 to Fr at t = 7 under the flow ¢.

Whenever 0P, intersects 0.F, transversely, ® # 0. In
this case, the boundary 0R, can always be decomposed
into two sets: pr = R, N OP, and f, = OR, N IF;.
Their (n — 2)-dimensional intersection, Z,, is nonempty,
and continuity implies that

I, =P, NOF, =p: N fr =0pr = 0fr.  (2)

For example, p, and f; are curve segments in the 2D
case depicted in Fig. 1, and Z, consists of the two points
I! and I2. In chaotic flows, computing p, is costly due
to the exponential stretching of 9Py in time. However, if
the flow is volume-preserving, p, need not be computed
explicitly to evaluate (1); indeed, the necessary trajectory
information for computing ® is concentrated in the orbit
of the lower-dimensional set Z.

The reason is that, for volume-preserving flows, the
integral of o over OR, is related to the “action” of the
trajectories in Z, = dp, = 9f, [20, Theorem 3.1]. In

particular,
/a:/a—l—// Ads, (3)
pr Po 0 JOps

where X is the Lagrangian form; it is defined such that
its differential, d), is the time-derivative of o along the
flow (i.e., the Lie derivative). The differential form A
is a generalization of the (phase space) Lagrangian of
classical mechanics, and the two coincide in 2D. For ex-
ample, taking M = R?, Q = dz Ady, and o = ydx,
the Lie derivative of a along the incompressible vector
field V = (0,¢, —0,¢) with stream function ¢ is given
by Lva = w(da) + diiva) = d(y Oyt — ) = dX (cf.
[20] for more details).

Essentially, (3) allows the integral of « to be performed
over the simpler set py instead of integrating over p, C
OR ., provided a Lagrangian “adjustment” term is added.
Combining (3) with (1), the total finite-time transport

becomes
@:/ a+/ a+// Ads. (4)
T Po 0 Ips

Since 0Py and 0.F; are known a priori, the only trajecto-
ries needed for this computation are those of dp, = Z,.

A key advantage of (4) is that the dimension of the
required trajectory information is reduced compared to
direct evaluation of (1). To see this, consider again the
2D example of Fig. 1. From (1), ® = [, a+ [ a. To
evaluate the second integral, one must track the evolu-
tion of pg over the interval T, since only 9Py is known
a priori. The associated cost (i.e., number of trajecto-
ries computed) is directly related to the length, curva-
ture, and desired resolution of the final curve, p,, and
the computed set covers a surface in the extended phase
space M xT'. However, in (4), dp, = Z, can be computed
much more efficiently; we use a root-finding method to
identify the intersections [19, 20]. In this case, the num-
ber of trajectories that must be computed decouples from
the length, curvature, and resolution of p,. It depends
only on the number of points in Z,, and these trajec-
tories form only a 1D set in the extended phase space.
Thus, the Lagrangian information required to compute
the orbit of Z. is one dimension less than that required
to compute p,. This dimension-reduction also general-
izes to the case of n > 2; the dimension of the set of
trajectories required to compute ® using (4) will always
be one less than that using (1) and two less than that
using a naive volume integration.

Once the orbit of Z, is known, the third integral in
(4) is immediately computable since dps = Zs and A is
derived directly from the flow. Two factors contribute to
the ease of computing the first two integrals in (4). First,
the regions Py and F; between which transport is studied
are typically quite regular, and integrals along portions of
their boundaries are often analytically tractable or oth-
erwise easily computed. Naturally, integrating over pg
is much easier than integrating over p,, which can be
exponentially stretched and folded by a chaotic flow.

Secondly, since both 9Py and 0F, are known, py C
0Py and f, C OF; may be specified by just their oriented
boundaries (endpoints when n = 2). From (2), these are
precisely Zy and Z,, respectively. Thus, once the orbit
of Z, is known, (4) may be evaluated without computing
any additional trajectories. Furthermore, it would be
impossible to compute ® from fewer trajectories; this
would amount to determining a line segment from a single
point. Hence, the cardinality of Z; is a lower bound on
the trajectory count—i.e., computational effort—needed
to compute ®, and (4) achieves this lower bound.

It should be noted that the dimension reduction and
trajectory minimization arguments outlined above are in-
dependent both of numerical implementation and of any
aspect of the dynamics outside the interval T'. In partic-
ular, they are independent of the asymptotic notions of
hyperbolicity and invariant manifolds (key components
of existing formalisms), and the flow need not even be
volume-preserving outside 7. The framework for com-
puting transport we present here is truly a consequence
of the finite-time volume-preserving dynamics [23].

Example: Rotated Arc Mizer—As a simple illustrative



example, we compute transport in a 2D unsteady model
of the Rotated Arc Mixer (RAM), a novel industrial mix-
ing device developed on the basis of scientific insight into
chaotic advection. Though previous studies have inves-
tigated global asymptotic mixing in periodic versions of
the RAM [24, 25], none have considered local transport
or finite-time effects, both of which have important prac-
tical design implications for the device.

The RAM consists of a stationary inner cylinder, punc-
tured by windows, and a rotating outer cylinder that
fits snugly over the inner one (see Fig. 2a). As fluid

FIG. 2. (a) Schematic of the RAM. (b) Cross section of the RAM
and streamline overlay for three different window configurations.

flows axially through the RAM, it contacts the rotat-
ing outer cylinder through the windows, inducing a sec-
ondary transverse flow (see Fig. 2b). Successive reposi-
tioning of the windows in the axial direction effectively
reorients this transverse flow, enabling chaotic dynamics
and highly efficient mixing [25].

The effect of window reorientation along the RAM’s
main axis can be modeled in cross-section by a 2D, un-
steady, cellular flow [24, 25], assuming a unit uniform
axial velocity profile [26]. Each flow cell is a reorienta-
tion of a steady base flow and corresponds to a single
window of axial length §; assuming a Stokes flow regime,
the analytical stream function ¢ from [27] describes its
dynamics. The resulting flow is thus volume-preserving
and the vector field is given by (&,9) = (9y¥, —0.v).
We assume a unit rotation rate of the outer cylinder, fix
the window opening angle A = /3, and reorient succes-
sive window locations by © = —27/3 around the RAM’s
circumference. This results in a periodic flow of period
length 33 and three distinct flow cells whose streamlines
are overlaid in Fig. 2b.

The axial window length, 8, and the (possibly non-
integer) number, k, of windows over the device length
are the primary control parameters for the full cellular
flow. For the 2D model, 8 denotes the time duration of
each flow cell, and the flow is active for a total transport
time 7 = kB. In the infinite-time case, 8 was shown to
strongly influence global flow topology and asymptotic
mixing in the RAM [25]; here we illustrate its impor-
tance to finite-time transport. We study transport out-
ward from the core of the RAM, letting Py be the central
disk containing half the cross-sectional area and letting
the target, F,, be the surrounding annulus (see Fig. 3,

7 =0). The total transport between Py and F, is com-

FIG. 3. Pr (shaded) and R+ C Pr (black) for 8 = 4, various 7.

puted via (4) as a function of both 8 and 7. Note that,
despite the periodicity of the flow cells, the flow must be
treated as aperiodic since only finitely many periods are
encountered on [0, 7] for any nonzero /3.

The length of 9P,, the number of lobes comprising
R, and the number of intersection points in Z, all typ-
ically grow exponentially with 7. For the case f = 4
of Fig. 3, they all grow as ¢’!27. Nonetheless, ® can
still be computed over a large range of 7 by employing
(4). As noted above, the number of points in Z, repre-
sents a lower bound on the trajectories required to com-
pute ®. Of course, to determine Z, we must compute
some trial trajectories outside the set itself; these are
then refined by root-finding methods to determine the
true intersections. By choosing the trials appropriately,
the number of trajectories needed to compute ® can be
close to the theoretical lower bound. We note that when
n > 2, dim(Z;) > 0, and so Z, must be approximated nu-
merically; this contributes computational error to ®. In
2D, however, Z, comprises finitely many discrete points
and such approximation error is absent. In this case,
Z. and its orbit—and thus & itself—are computed ac-
curately and efficiently using standard root-finding and
integration techniques, as described in [19, 20].

By contrast, there is effectively no upper bound on the
number of trajectories necessary to compute ® accord-
ing to (1): finite-resolution effects must be accounted for
even when n = 2. That is, under (1), the accuracy of
the computed transport is always tied directly to the nu-
merical resolution of 0P,. Both the global length and
the local curvature of this set typically increase dramati-
cally with 7, resulting in a corresponding increase in the
number of trajectories needed for accurate numerics [22].
In the cases we examined, the number of trajectories re-
quired to resolve 9P, was about two orders of magnitude
greater than the number of points in Z,. For example,
when # = 4 and 7 = 35, about 16, 000 points were needed



to resolve P, whereas Z, contains only 166 points.
The results of our transport computations are shown

in Fig. 4, displayed as the fraction of the area of P, that

intersects JF, for various # and 7. Solid lines indicate
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FIG. 4. Relative transport between Py and F, for various 3, 7.
Sharp peaks result from instantaneous switching between flow cells;
they are not numerical artifacts (see inset). (Color Online).

evaluation of (4) and dots represent validation by Monte-
Carlo (MC) sampling as described in [19, 20]. Notably,
transport depends non-monotonically on both 7 and g,
and identifying local and global transport maxima could
have important design implications. We also note that
MC validation was computationally infeasible for large
7. For example, the single MC data point at § = 5 and
7 = 18.2 took about 20 cpu hours, while evaluating (4)
took less than 2 minutes. Moreover, the statistical error
in the MC computations is around 0.1%. Computing
® = Area(P, N {M\F,}) according to (4), the error in
the computation of ® can be estimated by 3 (7/2—®—®).
This error is less than 0.003% for most values of 7 and 3
in Fig. 4, and is everywhere less than the MC error.

Conclusions—We have presented a theoretical frame-
work for describing and efficiently computing finite-
time transport between arbitrary regions in nD, volume-
preserving flows with arbitrary time dependence. Its
essence is the reduction of the transport problem to the
dynamics of an (n — 2)D “minimal set” of fundamental
trajectories. Our framework requires no knowledge of
the flow outside the finite transport interval and is in-
dependent of any notions of hyperbolicity or invariant
manifolds. Moreover, it offers a tremendous reduction in
computational effort compared to existing methods.

We have demonstrated the theory and its various ad-
vantages via a study of transport in a 2D unsteady model
of a realistic mixing flow, and have exposed nontrivial de-
pendence of the transport on the control parameters. The
generality of the theory facilitates similar Lagrangian
transport studies in generic nD systems. Additionally, ef-
forts to extend the framework to diffusive processes, such

as those involved in heat transfer and chemical kinetics
applications, are currently underway. The Lagrangian
formalism for advective-diffusive transport proposed in
[4] may offer some indications on how to proceed.
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