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The Schwarzschild black two-brane in AdS4 is dual to a finite temperature state in CFT3. We show
that the solution acquires a non-zero angular momentum density when a gravitational Chern-Simons
coupling is turned on in the bulk, even though the solution is not modified. A similar phenomenon
is found for the Reissner-Nordström black two-brane with axionic coupling to the gauge field. We
discuss interpretation of this phenomenon from the point of view of the boundary CFT3.
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Introduction— The gauge/gravity correspondence has
provided many important insights into strongly coupled
gauge theories. In particular, parity violating interac-
tions in the bulk have been shown to generate inter-
esting effects on boundary field theories. One example
is the effect of anomalies in four dimensions [1–3] (See
also chapter 20 of [4] and references therein), which had
been overlooked in the traditional approach to hydrody-
namics. Another is the existence of spatially modulated
phase transitions in three and four dimensions [5–8]. In
this paper, we point out yet another striking effect of
a parity violating interaction — spontaneous generation
of an angular momentum density and an edge current.
This question was previously examined by O. Saremi [9].
Parity violation effects in hydrodynamics have been dis-
cussed in [10], which also pointed out angular momentum
generation, though its physical mechanism and its con-
nection to the edge current have not been examined.
The spontaneous generation of angular momentum and

an edge current are typical phenomena in parity-violating
physics. They occur, for example, in the A-phase of
Helium-3, where the chiral p-wave condensate breaks par-
ity (see for example [4, 11, 12]). There has been a contro-
versy on its value in a given container geometry since dif-
ferent methods give different answers. The holographic
mechanism to generate the angular momentum density
described here may provide a new perspective on such
macroscopic parity-violating effects.
We here consider a (2 + 1)-dimensional boundary

field theory with a U(1) global symmetry, which is de-
scribed by classical gravity (together with various matter
fields) in a four-dimensional, asymptotically anti-de Sit-
ter spacetime (AdS4). The conserved, U(1) boundary
current jµ is mapped to a bulk gauge field Aa. We use
a, b = 0, 1, 2, z to denote bulk indices, µ, ν = 0, 1, 2 for
boundary indices and i, j = 1, 2 for boundary spatial in-
dices.
We discuss two representative bulk mechanisms for the

spontaneous generation of angular momentum; with a
gravitational Chern-Simons interaction

∫

ϑ R ∧ R [13]
and with an axionic coupling

∫

ϑ F ∧ F [14, 15], where

ϑ is a dynamical massless pseudoscalar, which is dual
to a marginal pseudoscalar operator O in the boundary
field theory, and R and F are the Riemann curvature
two-form and the field strength for a gauge field Aa, re-
spectively. To break the parity symmetry, we turn on
a non-normalizable mode for the pseudoscalar field ϑ.
With the gravitational Chern-Simons interaction, we ob-
tain a non-zero angular momentum density at finite tem-
perature. Similarly, the axionic coupling can generate a
non-zero angular momentum density at a finite chemical
potential. In both situations if we put the system in a
finite box (i.e. ϑ is nonzero only inside the box), the
spontaneous generation of angular momentum is always
accompanied by an edge current.
Without going into details of the bulk calculation, both

bulk mechanisms can be understood from the boundary
perspective as follows. The constant value θ of the mass-
less pseudoscalar ϑ is a non-normalizable mode, corre-
sponding to turning on a marginal deformation θ

∫

d3xO
in the boundary theory that breaks parity. The presence
of bulk interactions (

∫

ϑ R ∧ R or
∫

ϑ F ∧ F ) generates
a mixed two-point function

〈T0i(x)O(y)〉θ = −Cǫij∂
(y)
j δ(3)(x− y) + · · · , (1)

at a finite temperature or a finite charge density, where
ǫ12 = −ǫ21 = 1, C is a constant depending on the tem-
perature or charge density of the system, and · · · denotes
higher-order derivative terms which are irrelevant here.
Now, consider making θ slightly non-homogeneous;

then, from (1) and to leading order in the derivative ex-
pansion of θ, we have

〈T0i〉θ = Cǫij∂jθ(x) + · · · (2)

which vanishes for constant θ. Let us consider a profile
of θ(x) which takes constant value θ0 inside a spherical
box of size L but eventually goes to zero outside the box
along the radial direction.1 At the end of the calculation

1 We use a spherical box for convenience of illustration. Our con-
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we take L to infinity. From (2), we then find that the
angular momentum J of the boundary is given by

J = ǫij

∫

d2xxi〈T0j〉θ = −2Cθ0

∫

d2x (3)

which remains nonzero for a constant θ. For a finite (but
large) L, 〈T0i〉θ is zero both inside and outside the box,
but will be nonzero in the transition region where θ(x)
changes from θ0 to zero. In other words, there is an edge
momentum flow. In terms of the polar coordinate (r, φ),
the nonvanishing component of this edge current is

〈T0φ〉θ = ChL(r) + · · · (4)

where hL(r) is a function with compact support near
r = L, and whose precise form depends on the specific
profile of θ(x).
Heuristically, θ can be considered as a measure of the

strength of parity breaking. A constant nonzero θ in-
side the box has thus two effects: (i) a nonzero angular
momentum inside the box; (ii) an edge current at the
boundary of the box.
When the system is at a finite charge density, then

there is also a parallel story for the U(1) charge current ji,
with T0i in (1) and (2) replaced by ji and C replaced by
some other constant Ccharge. We can also define a “charge
angular momentum” Jcharge =

∫

d2x ǫijxijj . A nonzero θ
inside the box then also leads to a nonzero charge angular
momentum Jcharge and an edge U(1) current jφ, which
can be obtained by replacing C in (3) and (4) by Ccharge.
We now provide an explicit derivation of (1) and the

corresponding C and Ccharge from bulk gravity.
Gravitational Chern-Simons interaction— Consider

the following action [16]

S =
1

2κ2

∫

d4x
√−g

[

R+
6

ℓ2
− 1

2
(∂ϑ)

2 − αCSℓ
2

4
ϑ ∗RR

]

(5)
where ∗RR = ∗RabcdRbacd and ∗Rabcd = 1

2ǫ
cdefRab

ef .
ǫabcd is the totally antisymmetric tensor with ǫ012z =
1/

√−g. The equations of motion are

Rab +
3

ℓ2
gab = αCSℓ

2Cab +
1

2
∂aϑ∂bϑ, (6)

1√−g
∂a

(

gab
√−g∂bϑ

)

=
αCSℓ

2

4
∗RR, (7)

where Cab ≡ ∇c(∇dϑ
∗Rc(ab)d) and parenthesis in in-

dex lists denote symmetrization. Equations (6)–(7) are
solved by the standard Schwarzschild black brane

ds20 =
ℓ2

z2

[

−f(z)dt2 +
dz2

f(z)
+ γijdx

idxj

]

, (8)

clusions do not depend on the shape of the box, as far as it is
sufficiently big.

if ϑ is a constant, where γij is the flat metric in (x, y)
space and f(z) = 1 − z3/z30 . The horizon is located at
z = z0 with a temperature T = 3/(4πz0).
Let us now take the boundary value for ϑ to be space-

time dependent θ(xµ). Clearly, ϑ(z, xµ) = θ(xµ) and (8)
no longer solves (6)–(7). Nevertheless, if θ(xµ) varies
slowly over spacetime, we can solve the bulk equations of
motion order by order in a derivative expansion of θ(xµ).
In particular, from the modification of the bulk metric,
we could read the response of the boundary stress-energy
tensor to a nonuniform θ(xµ). The calculation is similar
in spirit to that of forced fluid dynamics [17], but at the
end of the calculation we will take θ(x) to be a constant.
For our purpose, it is enough to work out the expansion
to first-order in ∂iθ with θ time-independent, in which
case only the g0i components of the metric and ϑ are
modified. To carry out the derivative expansion, it is
convenient to introduce the book-keeping parameter ǫ to
count the number of boundary spatial derivatives, with
∂iϑ = O(ǫ), ∂i∂jϑ = O(ǫ2), ∂iϑ∂jϑ = O(ǫ2) and so on.
Writing the metric as

ds2 = ds20 + 2
ℓ2

z2
aidx

idt (9)

with (a1, a2) functions of (z, x, y), the nontrivial compo-
nents of the Einstein equations (6) are the (z, t) compo-
nent

∂iai = f(z)G(xi), (10)

with G(xi) an arbitrary function of xi, and the (t, i) com-
ponents

ǫij∂jB− f

z
(z∂2

zai−2∂zai) = −ǫij
αCSzff

′′

2
(∂jϑ+z∂z∂jϑ)

(11)
where B ≡ ∂xay − ∂yax and f ′ = ∂zf , etc. Equation (7)
gives (to first order in ∂iθ)

z2∂z(z
−2f∂zϑ) =

αCS

2
z2f ′′∂zB . (12)

Since we are considering a normalizable solution for
the metric, G must vanish. We thus have ∂iai = 0,
which implies that ǫij∂jB = −(∂2

x + ∂2
y)ai. Assuming

regularity of ai and ϑ at the horizon, then Eq. (11) im-
plies that (∂2

x+∂2
y)ai(z0, x

i) = 0 at the horizon. Imposing

the boundary condition2 ai(z0, x
i) → 0 at spatial infinity

r → ∞, we then conclude that

ai(z0, x
i) = 0 (13)

at the horizon. From Eq. (11), ai ∼ O(ǫ) and thus
∂jB ∼ O(ǫ2), i.e. we keep ǫij∂jB above only to impose

2 Note that this boundary condition is consistent with that for
θ(x) as discussed in the paragraph following Eq. (2).
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the boundary condition (13). Also, acting ∂i on both
sides of (12), imposing regularity of ϑ at the horizon and
keeping terms only to O(ǫ), we find that

∂z∂iϑ = 0 → ∂iϑ(z, x
µ) = ∂iθ(x

µ) (14)

i.e. ∂iϑ is z-independent. Now Eq. (11) can be immedi-
ately integrated at O(ǫ) to give

ai = ǫij
3αCSz

3(z0 − z)∂jθ

4z30
, (15)

fixed uniquely by normalizability at infinity and (13).
We now proceed to compute the boundary stress-

energy tensor due to (15). Although there are potential
contributions from (i) direct variation of the ∗RR term
and (ii) additional boundary counter terms required due
to the presence ∗RR, we have evaluated them explicitly
and verified that both vanish separately. Therefore, it
suffices to use the standard formulas as in [18–20], which
give

T0i =
ℓ2

2κ2

9αCSǫij∂jθ

4z20
. (16)

Equation (16) leads to (1) with

C =
ℓ2

2κ2

9αCS

4z20
=

αCS

2
S3T

2 =
9αCS

16π
s. (17)

Here, S3 = (2π)2ℓ2

κ2 is the central charge of the CFT de-
fined either using entanglement entropy on a disk [21]
or equivalently the free energy on an S3 [22]. Moreover,

s = 2πℓ2

κ2z2

0

is the entropy density of the finite temperature

system.
Axionic coupling—Let us now set αCS = 0 in (5) and

add to this equation the following terms

Sax = − ℓ2

2κ2

∫

d4x
√−g

[

F abFab + βCSϑ
∗F abFab

]

(18)

with βCS a dimensionless constant and ∗F ab ≡ 1
2ǫ

abcdFcd.
The equations of motion are now

Rab +
3

ℓ2
gab − 2ℓ2

(

FcaF
c
b −

gab
4

F 2
)

=
1

2
∂aϑ∂bϑ (19)

1√−g
∂a

(

gab
√−g∂bϑ

)

= βCSℓ
2 ∗FF (20)

∂a
[√−g

(

F ab + βCSϑ
∗F ab

)]

= 0 , (21)

which admit as a solution the standard AdS charged
brane if ϑ is a constant. The metric has the form (8)
but with

f(z) = 1− z3

z3M
+

z4

z4Q
(22)

and the gauge potential is

A
(0)
t = µ

(

1− z

z0

)

, µ =
z0
z2Q

(23)

where z0 is the location of the horizon and µ the chemical
potential.
As before, we take the boundary source θ(xi) to be

spatially inhomogeneous, but slowly varying. In addi-
tion to a metric deformation as in (9), such a boundary
source will now also excite the bulk gauge field Ai along
the boundary spatial direction. The analysis of the equa-
tions is similar to the previous example; in particular, the
scalar equation still yields (14), and (13) also applies. To
O(ǫ), the nontrivial equations from (20)–(21) are

∂z
(

fz2QA
′
i − ai

)

= βCSǫij∂jϑ , (24)

za′′i − 2a′i −
4z3

z2Q
A′

i = 0 , (25)

which can be integrated exactly. Upon imposing the nor-
malizability condition at infinity and the boundary con-
dition (13) at the horizon, we find that ai and Ai have
the following leading-order behavior near the boundary:

ai(z) =
2z3z20
3z4Q

βCSǫij∂jθ +O(z4), (26)

Ai = −z0z

z2Q
βCSǫij∂jθ +O(z2) . (27)

We then find the stress-energy tensor and the charged
current

T0i =
ℓ2

2κ2

2z20
z4Q

βCSǫij∂jθ , (28)

ji =
4ℓ2

2κ2

z0
z2Q

βCSǫij∂jθ , (29)

which lead to

C =
ℓ2βCS

κ2

z20
z4Q

= βCS
πρ2

2s
(30)

Ccharge =
2ℓ2βCS

κ2

z0
z2Q

=
βCS

2π2
S3µ (31)

where ρ = 2ℓ2

κ2z2

Q

is the charge density, s = 2πℓ2

κ2z2

0

is the

entropy density, and S3 is the central charge as discussed
earlier. Note that Ccharge is temperature independent.
In the extremal limit, s = π√

3
ρ and we then find that3

C =

√
3

2
βCSρ, T = 0 . (32)

Finally we can turn on a nonzero αCS in the charged
black brane background (setting βCS = 0), and we find

3 Note in the strict extremal limit, the intermediate steps appro-
priate for a nonzero temperature no longer apply due to singular
nature of the extremal horizon. But expression (30) has a well
defined zero temperature limit.
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that the corresponding C and Ccharge are

C =
3ℓ2

2κ2

αCSz
4
0

(

320z20z
6
M − 432z0z

3
Mz4Q + 135z8Q

)

180z6Mz8Q

=
αCSs

240π

[

135− 162
(πρ

s

)2

+ 23
(πρ

s

)4
]

, (33)

Ccharge = 0. (34)

C decreases monotonically with ρ
s
, reaching 0 at

ρ

s
=

1

π

√

3

23

(

27− 8
√
6
)

≈ 0.983

π
≈ 0.313 (35)

which corresponds to T/µ ≈ 0.165, and in the extremal
limit we find

C = −
√
3

5
αCSρ, T = 0 . (36)

With the chemical potential µ fixed, as the temperature
T varies from 0 to ∞, the ratio ρ/s decreases monoton-
ically from

√
3/π to 0. It is curious that, in going from

the low temperature to the high temperature limit, C
changes sign, increasing monotonically from the negative
value of (36) at T = 0 to (17) at infinite temperature.
Hall viscosity.— Another interesting parity odd re-

sponse to gravitational perturbations is Hall viscosity,
which occurs in quantum Hall states [23], where it is
shown to be proportional to angular momentum den-
sity in various examples [24, 25]. A holographic model
exhibiting Hall viscosity has been proposed [26]: the
Einstein-scalar system studied in this paper plus a po-
tential for the scalar field. There, the Hall viscosity coef-
ficient is shown to be proportional to the normal deriva-
tive of the scalar field at the horizon of the black brane.
Explicit models with nonzero Hall viscosity have been
constructed in [27, 28]. We have verified the Saremi-Son
formula of [26] in our gravitational Chern-Simons setups,
but the Hall viscosity turns out to be zero since the scalar
field is constant in our solution. It should be noted, how-
ever, that the holographic model used here is dual to a
CFT at finite temperature and not to a gapped zero tem-
perature state. We hope to investigate the Hall viscosity
phenomenon in a more realistic setup in the future.
To summarize, in this paper we identified from two

classes of holographic models a field theoretical mech-
anism for spontaneous generation of a nonzero angular
momentum density and edge current. Although our anal-
ysis was restricted to a marginal operator, likely it is
more general, applicable to relevant operators or in the
absence of an external source. We will leave these issues
for future investigation.
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