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We introduce a parallel Wang–Landau method based on the replica-exchange framework for Monte
Carlo simulations. To demonstrate its advantages and general applicability for simulations of com-
plex systems, we apply it to different spin models including spin glasses, the Ising model and
the Potts model, lattice protein adsorption, and the self-assembly process in amphiphilic solutions.
Without loss of accuracy, the method gives significant speed-up and potentially scales up to petaflop
machines.

In Wang–Landau (WL) sampling, the a priori un-
known density of states g(E) of a system is iteratively
determined by performing a random walk in energy space
(E) seeking to sample configurations with probability
1/g(E) (“flat histogram”) [1–3]. This procedure has
proven very powerful in studying problems with complex
free energy landscapes by overcoming the prohibitively
long time scales typically encountered near phase transi-
tions or at low temperatures. It also allows us to calcu-
late thermodynamic quantities, including the free energy,
at any temperature from a single simulation. Moreover,
Wang–Landau sampling is a generic Monte Carlo proce-
dure with only a minimal set of adjustable parameters
and, thus, has been applied successfully to such diverse
problems as spin glasses, polymers, protein folding, lat-
tice gauge theory, etc., see [4–7] for examples. Various
improvements have been proposed to the method, either
by optimizing the “modification factor–flatness criterion”
scheme [8–10] or by means of efficient Monte Carlo trial
moves [11–13] (to name a few). Ultimately, however,
parallelization is the only means to systematically sus-
tain the performance for ever larger problems. Surpris-
ingly, to date, only two directions have been taken in
this regard:
Parallelization scheme (i): As already suggested [2, 3],

it is possible to subdivide the total energy range into
smaller sub-windows each sampled by an independent
WL instance (random walker). The total simulation time
is obviously limited by the convergence of the slowest
walker and can be tuned by unequal distribution of en-
ergy space. However, an optimal load balancing is im-
possible due to the a priori unknown irregularities in the
complex free energy landscape. Moreover, energy inter-
vals cannot be reduced arbitrarily due to systematic er-
rors introduced from “locked-out” configurational space.
Parallelization scheme (ii): Here, multiple random

walkers work simultaneously on the same density of
states (and histogram). Distributed memory (MPI [14]),
shared memory (OpenMP [15]), and GPU [16] variants
of this idea have been proposed; shared memory imple-
mentations have the advantage of not requiring periodic
synchronization among the walkers and even allowing for
“data race” when updating g(E) without noticeable loss

in accuracy [15]. Although this second approach seem-
ingly avoids the problems of scheme (i), a recent, mas-
sively parallel implementation [16] has revealed that cor-
relations among the walkers can systematically under-
estimate the DOS in hardly accessible energy regions.
A remedy to the problem has been proposed in terms of
a (heuristic) bias to the modification factor; but, over-
all, such inter-dependencies render this parallelization
scheme highly problematic. Moreover, it is important to
note that the effective round-trip times of the individual
walkers are not improved by this concerted update.
In this Letter, we propose a generic parallel Wang-

Landau scheme which combines the advantageous dy-
namics of Wang-Landau sampling with the idea of
replica-exchange Monte Carlo [17, 18]. Similar to
scheme (i), we start off by splitting up the total en-
ergy range into smaller sub-windows but with large over-
lap between adjacent windows. Each energy sub-window
is sampled by multiple, independent WL walkers. The
key to our approach is that configurational or replica
exchanges are allowed among WL instances of overlap-
ping energy windows during the course of the simulation,
such that each replica can travel through the entire en-
ergy space. The replica exchange move does not bias the
overall WL procedure and, thus, guarantees the flexibil-
ity to be applied to any valid WL update/convergence
rule (e.g. the 1/t algorithm [10]). Furthermore, our hi-
erarchical parallelization approach does not impose any
principal limitation to the number of WL instances used
[contrary to scheme (i), see above]. Therefore, it is con-
ceivable to design setups which scale up to thousands
of CPUs.
The standard WL algorithm [1, 2] estimates the den-

sity of states, g(E), in an energy range [Emin, Emax]
using a single random walker. During the simula-
tion, trial moves are accepted with a probability P =
min [1, g(Eold)/g(Enew)], where Eold (Enew) is the energy
of the original (proposed) configuration. The estima-
tion of g(E) is continuously adjusted and improved by
a modification factor f (as g(E) → f × g(E)) which gets
progressively closer to unity as the simulation proceeds,
while a histogram H(E) keeps track of the number of
visits to each energy E during an iteration. When H(E)
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FIG. 1. a) Partition of the global energy range into nine equal-
size intervals with overlap o = 75%. b) Run-time balanced
partition with overlap to the higher energy interval o ≥ 75%.
Multiple WL walkers can be employed in each interval.

is sufficiently “flat”, the next iteration begins with H(E)
reset to zero and f reduced by some predefined rule (e.g.
f →

√
f). The simulation terminates when f reaches a

small enough ffinal at which point the accuracy of g(E)
is proportional to

√
ffinal for flat enough H(E) [8].

In our parallel WL scheme [19], the global energy range
is first split into h smaller intervals (sub-windows), each
of which contains m random walkers. Consecutive inter-
vals must overlap each other to allow for configurational
exchange, see Fig. 1 for examples. The overlap o should
be neither too large nor too small so as to strike a bal-
ance between fast convergence of g(E) and a reasonable
exchange acceptance rate. In fact, we find that a large
overlap of o ≈ 75% is advantageous, but that number is
flexible to a certain extend and one can also obtain ex-
cellent results with other choices [20]. Within an energy
sub-window, each random walker performs standard WL
sampling. After a certain number of Monte Carlo steps, a
replica exchange is proposed between two random walk-
ers, i and j, where walker i chooses swap partner j from
a neighboring window at random. Let X and Y be the
configurations that the random walkers i and j are car-
rying before the exchange; E(X) and E(Y ) be their en-
ergies, respectively. From the detailed balance condition
the acceptance probability Pacc for the exchange of con-
figurations X and Y between walkers i and j is:

Pacc = min

[

1,
gi(E(X))

gi(E(Y ))

gj(E(Y ))

gj(E(X))

]

, (1)

where gi(E(X)) is the instantaneous estimator for the
density of states of walker i at energy E(X), cf. [21].
In contrast to parallelization scheme (ii) above, in our

formalism, every walker is furnished with its own g(E)
and H(E) which are updated independently. Also, every

walker has to fulfill the WL flatness criterion indepen-
dently at each iteration, ensuring that systematic errors
as found in [16] cannot occur. When all random walkers
within an energy sub-window have individually attained
flat histograms, their estimators for g(E) are averaged
out and redistributed among themselves before simulta-
neously proceeding to the next iteration. This practice
reduces the error during the simulation with

√
m [20],

i.e. as for uncorrelated WL simulations. Furthermore,
increasingm can improve the convergence of the WL pro-
cedure by reducing the risk of statistical outliers in g(E)
resulting in slowing down subsequent iterations. (Alter-
natively, it allows us, in principle, to use a weaker flatness
criterion [20], which is in the spirit of a concurrently pro-
posed idea of merging histograms in multicanonical sim-
ulations [22].) The simulation is terminated when all the
energy intervals have attained ffinal. At the end of the
simulation, h×m pieces of g(E) fragments with overlap-
ping energy intervals are used to calculate a single g(E)
in the complete energy range. During that procedure,
the joining point for any two overlapping density of states
pieces is chosen where the inverse microcanonical temper-
atures β = d log[g(E)]/dE best coincide, and statistical
errors are determined by resampling techniques [20, 23].

In order to assess its general applicability, feasibil-
ity and performance, we applied this novel parallel WL
scheme to multiple models in statistical mechanics. The
first two are the well studied Ising model and 10-state
Potts model in 2 dimensions, showing second-order and
first-order transitions, respectively. We applied the par-
allel scheme to the 2D Ising model up to system sizes
of 2562 using up to the order of 2000 cores. The devi-
ations from exact results were always of the same order
as the statistical errors, which are < 0.01% in the peak
region of the density of states. For the 10-state Potts
model, we extrapolated the critical temperature in the
thermodynamic limit from results of system sizes up to
3002. Our estimate of T∞

c = 0.701234 ± 0.000006 is in
excellent agreement with the exact value of 0.701232 [24].
While it still takes a few days for a single-walker WL run
to converge for a 1002 Potts system, we obtained all re-
sults, which will be shown in detail elsewhere [20], within
hours. Besides this remarkable accuracy and absolute
gain in timing, we will show below that our algorithm
has almost perfect weak scaling behavior for these lattice
models since their system sizes are scalable in a straight-
forward way. For a final test, we applied the method to a
12×12×12 spin-glass system and reproduced results pub-
lished earlier [2, 25] with speed-ups of the same order as
reported below. In particular, low energy states are found
much faster, while our estimate for e0 = −1.787± 0.005
agrees perfectly with the earlier data [2]. To demonstrate
the potential to obtain new physics results and strong
scaling properties, we also apply the method to two very
distinct and particularly challenging molecular problems:
a coarse-grained continuum model for the self assembly
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FIG. 2. Logarithm of density of states (DOS) obtained by our
parallel WL scheme with the setup shown in Fig. 1 a. (Top)
Amphiphilic system containing 75 lipid molecules and a to-
tal of 1000 particles. Error bars (σ), obtained from multiple
independent simulations, are smaller than the line thickness
and shown in the inset. The pictures show a conformation
where lipid molecules assemble and form a single cluster (E ≈

−2100) and a low-energy bilayer configuration (E ≈ −4800).
(Bottom) DOS of the lattice HP 67mer, where only H-
monomers are attracted by the substrate. The H-H inter-
action is 3 times stronger than the surface attraction leading
to the unusual sawtooth like shape. The inset shows the error
bars on the enlarged low-energy data. Note the two energy
gaps, i.e. no conformations exist with E = −173, −172, and
−170 (see arrows). The picture shows an adsorbed HP protein
with energy E = −174.

of amphiphilic molecules (lipids) in explicit solution and
a lattice model for the surface adsorption of proteins.
In the first model, amphiphilic molecules, each of which
composed of a polar (P) head and two hydrophobic (H)
tail monomers (P–H–H), are surrounded by solvent par-
ticles (W). Interactions between H and W molecules, as
well as those between H and P molecules, are purely re-
pulsive. All other interactions between non-bonded par-
ticles are of Lennard-Jones type; bonded molecules are
connected by a FENE potential, cf. [26, 27] for similar

models. The second model uses the hydrophobic-polar
(HP) model [28] for protein surface adsorption. Here a
protein is represented by a self-avoiding walk consisting
of H and P monomers placed on a cubic lattice with an
attractive substrate. Recent studies on this model and
details can be found in [29, 30].

Both models bring about qualitatively different tech-
nical challenges, such as high energy and/or configura-
tional barriers, and simulations of particular setups are
impossible for all practical purposes using the traditional,
single walker WL method due to unreasonable resource
demands. For a demonstration, we choose two such sys-
tems. The first consists of 75 lipid molecules and 775
solution particles using the first model with a continu-
ous energy domain. The density of states g(E) on an
energy range covering the lipid bilayer formation spans
more than 1600 orders of magnitude (cf. Fig. 2 a), which
makes low temperature statistics extremely difficult to
obtain. The second system is an HP lattice protein con-
sisting of 67 monomers [31] interacting with a weakly
attractive surface and with discrete energy levels, which
gives rise to an unusually rugged density of states, see
Fig. 2 b. Obtaining convergence for the entire energy
range is an arduous task using a single walker.

Our parallel WL framework allows us to successfully
simulate both, previously inaccessible, systems. The rea-
sons are two-fold: first, each walker is now responsible
for sampling a smaller configurational phase space, which
contributes mainly to the faster convergence. Second, the
replica exchange process revitalizes walkers from trapped
states and avoids an erroneous bias in g(E) due to poten-
tial ergodicity breaking since replicas can access the en-

tire conformational space by walking through all energy
windows. A typical time-series of a replica performing
round trips in the full energy range of the lipid system
(cf. Fig. 2 a) is shown in Fig. 3. With these features
combined, we obtain the entire g(E) with a noticeable
speed-up and high accuracy, see [20] for more details.

To quantify the efficiency of the parallel WL scheme,
we define the speed-up, so(h,m), as the number of Monte
Carlo steps taken by the slowest parallel WL walker
(Nparallel

o (h,m)), as compared to that taken by m sin-
gle walkers (N single):

so(h,m) =
N single

Nparallel
o (h,m)

. (2)

For h . 20 we have achieved strong scaling: the speed-up
scales linearly with the increase in h as shown in Fig. 4 a
for a fixed number m and both energy splittings shown
in Fig. 1. While the equal-size energy range splitting
(Fig. 1 a) is the most basic approach, the run-time bal-
anced energy splitting (Fig. 1 b) is chosen such that walk-
ers in different energy sub-windows complete the first
WL iteration after the same number of sweeps (within
statistical fluctuations). As the growth behavior of WL
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FIG. 3. Path of a single replica through energy space. Replica
exchange between walkers is proposed every 104 sweeps (data
also shown with that resolution), with acceptance rates be-
tween 30 and 55%. Grid lines correspond to the borders of
the individual energy windows, cf. sketch of parallel setup at
right and Fig. 1 a.
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FIG. 4. a) Speed-up so(h,m) for different numbers of cores
for equal-size energy windows and overlap o = 75% (blue
circles, cf. Fig. 1 a) and using a run-time balanced energy
splitting (red diamonds, cf. Fig. 1 b). Here, the calculation
of the speed-up is based on the MC steps (MCS) needed to
complete the first WL iteration. b) MC time to terminate
serial WL runs for different system sizes of the 2D Potts model
(blue circles) vs. run time for parallel runs if the number of
cores increases according to the increase in system size (red
diamonds). The run time practically stays constant, proving
the weak scaling property of our method.

histograms is in principle known [8], such an energy split-
ting can be estimated by analyzing the first-iteration his-
togram from a short pre-run with equal-size energy inter-
vals. Using the lipid system as an example and consid-
ering a much smaller global energy range accessible for
single-walker simulations, the slope of speed-up in com-
pleting the first WL iteration is ≈ 0.5 for the equal size
energy splitting and ≈ 1.6 for the run-time balanced en-
ergy splitting, which is particularly remarkable as this
indicates that the speed-up is larger than the number of

processors used. For the HP protein (cf. Fig. 2 b), single
walker WL simulations did not reach convergence of the
DOS over the entire energy range within a CPU year,
yet all parallel runs finalized within a month already for
equal-size energy splitting and with only a single walker
per energy interval. We found that so=75%(h = 9) ≈ 20;
again, we get a speed-up larger than the number of pro-
cessors even in this basic set-up. To investigate the weak
scaling properties, we simulate the 10-state Potts model
for different system sizes. We increase the number of
computing cores by the same amount as the system size
increases and measure the total run time. The results are
shown in Fig. 4 b), where these data are compared to the
run time increase for serial, single walker WL simulations
of the same model. Fig. 4 clearly shows that our method
is able to achieve both, strong and weak scaling, i.e., by
increasing the number of computing cores one can get
results faster for the same system and/or simulate larger
systems in the same time.

To conclude, we introduced a generic, hierarchical par-
allel framework for generalized ensemble WL simulations
based on the concepts of energy range splitting, replica
exchangeMonte Carlo and multiple randomwalkers. The
method is held as simple and general as possible and leads
to significant advantages over traditional, single-walker
WL sampling. In our complete formulation, we consider
multiple WL walkers in independent parallelization di-
rections and show that strong and weak scaling can be
achieved. (Our formulation far surpasses a version with
a single walker per equal-size energy sub-window and an
ad-hoc overlap, which was used earlier to study evap-
oration and condensation in a spin lattice model [21]).
With the ability to reach into previously inaccessible do-
mains, highly accurate results, and proven scalability up
to ∼ 2000 cores without introducing an erroneous bias,
we provide a proof of concept that our novel parallel WL
scheme has the potential for large scale parallel Monte
Carlo simulations. Since the framework is complemen-
tary to other technical parallelization strategies, it is fur-
ther extendible in a straightforward way. This facilitates
efficient simulations of larger and more complex prob-
lems and thus provides a basis for many applications on
petaflop machines.
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[29] Y. W. Li, T. Wüst, and D. P. Landau, Comp. Phys.

Comm. 182, 1896 (2011).
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