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A common goal in the control of a large network is to minimike humber of driver nodes or control inputs.
Yet, the physical determination of control signals and trepprties of the resulting control trajectories remain
widely under-explored. Here we show that: (i) numericaltogirfails in practice even for linear systems if the
controllability Gramian islI-conditioned, which occurs frequently even when existing controllapitiriteria are
satisfied unambiguously; (ii) the control trajectories geeerallynonlocal in the phase space, and their lengths
are strongly anti-correlated with the numerical succegsanad number of control inputs; (iii) numerical success
rate increases abruptly from zero to nearly one as the nuafloentrol inputs is increased, a transformation we
termnumerical controllability transition. This reveals a trade-off between nonlocality of the cdritegectory

in the phase space and nonlocality of the control inputsémgtwork itself. The failure of numerical control
cannot be overcome by merely increasing numerical preeissguccessful control requires instead increasing
the number of control inputs beyond the numerical contbdlity transition.

PACS numbers: 89.75.Hc, 05.45.-a

A system is controllable if its state can be driven to dif- well-defined] is equivalent to the commonly used Kalman'’s
ferent predefined states by a given set of input control sigrank condition mentioned above. Quite surprisingly, despi
nals, with controllability depending on both the number andthis explicit solution and formal equivalence, we show that
the placement of the control inputs [1]. Control often relie the determination ai(¢) is fundamentally limited in networks
on the promise that the direct manipulation of relatively fe with more than a handful of nodes. This calls for a careful re-
degrees of freedom can render the entire system contrellablinterpretation of existing controllability criteria.

This promise has special meaning in the study of complex net- Specifically, in this Letter we show that control fails in pra
works, where the large total number of nodes contrasts witlice if the controllability Gramian is ill-conditioned, vidh

the limited number that can be directly controlled due ta coscan occur even when the corresponding Kalman’s controlla-
and physical constraints. The control of network systems igility matrix is well-conditioned. We also show that the eon
important in applications as diverse as the operation of introl trajectory from an initial to a target state is gengraibn-
frastructure networks [2], coordination of moving sensotd  |ocal in the phase space and remains finite-size (in fact very
robots [3], devise of therapeutic interventions [4], maag long) even when the target state is brought arbitrarily elos
ment of ecological networks [5], and control of cascadinlg fa 1o the initial one. The lengtlfi”" ||4:(t)||d¢ of such a trajectory
ures in general [6, 7], and it has received increased attenti generally increases with the condition number of the Gramia
in the recent physics literature [7-12]. Both the nonlocality of the control trajectory and contrail f

A number of significant recent studies have focused onyre rate are reduced by increasing the number of control in-
networks withn-dimensional linear time-invariant dynam- puts. The latter manifests itself as a sharp transition ase f

ics [13-16], p tion of the number of control inputs, below which numerical
z(t) = Az(t) + Bu(t), (1)  control always fails and above which it succeeds. Aside from
d its implications for control, the characterization of suechu-

with controllability usually determined by the Kalman’srezo
trollability matrix K = [B AB--- A"~ B] [17]. Given the
matrices4d andB, control inputs(t) exist for any initial state
z(© and target state(!) if and only if K has full row rank.
In particular, if all nodes in a network have intrinsic dyrias
so thatA;; # 0 for all 4, it follows that generically there exists
u(t) such that the entire network can in theory be controlledCI
by a single control input [14, 18].

A fundamental question is, however, whether the contro
signalsu(t) can actually be constructed in practice. At first
glance, this question may sound dull given that an explicit
pression exists fou(t) corresponding to the minimal-energy
control trajectories it € [tg, 1]

merical controllability transition adds a new dimensiorthe
research on structural [20], dynamical [21], and algorithm
complexity [22] transitions in networks, which has had fatoa
impacts [23—-25], with recent examples ranging from synehro
nization and percolation to epidemic processes [26—30].
There are known factors that can cause control to fail, in-
uding nonlinearity of the dynamics, parameter uncetyain
F\nd stochasticity. Our results show that even in the mostfav
able case, in which the system is deterministic, autonomous
and linear, the disparity between theory and practice pases
fundamental limit on our ability to control large networks.

We first establish the nonlocality of control trajectorigde
say that a state(?) of system (1) is strictly locally control-
u(t) = BT®" (to, )W L (to, t1) [®(to, t1)2™M) — 2], (2)  lable (SLC) if for any ballB(z(?), ¢) of radiuss > 0 centered
" oo _ atz(9) there is a radiug > 0 such that any target(!) inside
whereW (to, t1) = [, ®(to,t)BB" @ (to,t)dl is the con-  the concentric balB(z(®, §) can be reached from® with
trollability Gramian and®(#',¢t) = e('~4 [19]. Inciden-  a control trajectory entirely insid8(z(), e )—see Fig. 1(a).
tally, matrix W (¢o, t1) being invertible [hence Eq. (2) being Note that a state can be locally controllable, in the senat th
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FIG. 1. (a) lllustration of a state that is SLC (left) and oftats
that is not (right). (b) Example systein = z1 + ui(t), 2 =
x1, where any state not on the ling = 0 is not SLC; the curves
indicate minimal-energy control trajectories for the giveitial state
(open symbol) and target states (solid symbols). The bacigt
arrows indicate the vector field in the absence of controlthisstwo-
dimensional example suggests, almost all states of linsaems are
not SLC whenever the number of control inputs is smaller tinan
number of dynamical variables.

control trajectories always exist for neighboring targates,

—

length of control trajectory, L&

£
—~
=
-

length of control trajectory, LZ

L ¥ 4
’/V —4— at the origin

Y —@— at other states
L L L L

10° 107

_1 )

20

80
number of control inputs, q

L L
10* 10° 10% 10" 0 40 60

target distance, &

FIG. 2. (a) Average length of the control trajectories axfiom of
the distance from the target when the initial states are dway
the origin versus when they are at the origin. In the formeedhe
initial states were chosen randomly on the unit sphere oeshtd the
origin. In both cases the target states are randomly odehtgpart
andq = 25. (b) Average length of the control trajectories as function
of the number of control inputs for initial states away frdme brigin
andé = 1072, Each data point corresponds o000 realizations,
for ER networks withn = 100.

n and connection probability. We address the impact of net-

and yet not be SLC. Figure 1(b) shows one such example iqjork structure by also considering networks generatedgusin

two dimensions: for a state in thg > 0 half-plane, the con-
trol trajectories to any neighboring target state with allana
xra-component necessarily cross into the < 0 half-plane
(symmetric results apply to initial states in the other half
plane).

the configuration model [24] for scale-free (SF) degree dis-
tributions P(k) ~ k=" for k > kuin, Where in our simula-
tions the minimum degrek,,;,, is chosen to keep the average
degree fixed ag is varied. The edges and the diagonal el-
ementsA;; are assigned weights drawn from a uniform dis-

We show that this result is in fact general for any control-tribution in [~1,1]. Without loss of generality, we assume
lable system in which one or more components are not dithat the nodes of the networks are one-dimensional dynamica

rectly controlled. Indeed, if the?” component is not directly
controlled, the initial states in the half-spagcér); > 0 can
only be driven to neighboring target states vmi:lﬁfl) < x,(f) if
the control trajectory crosses into the half-spade);, < 0,
since otherwise:; (t) = (Ax(t)), would be nonnegative and

systems [i.e.z(t) = (z1(t), 22(t), ..., xx(t)), Wwherex;(t) is

a scalar variable representing the state of nd@ad that the
control matrix B is diagonal upon row permutation, so that
there is a one-to-one relationship between control inpods a
driver nodes. For each network, numheof driver nodes,

x(t) would never decrease (analogous argument applies @nd given initial and target states, we calculate numéyical

the other half-space). Therefore, all states outside tipery

the minimal-energy control trajectories given by Eq. (3h-U

plane(Az);, = 0 are not SLC, and hence almost all states ardess noted otherwise, we choose the driver nodes randomly
not SLC. The origin, on the other hand, is the only state thagt each independent realization and consider the contnel ti

is SLC for any control matriX3 when A is nonsingular. The
control trajectories defined by Eqgs. (1)-(2), which minieiz

the energyft’;1 ||lu(t)||?dt, are given by
ZC(t) = q)(tvtO)['r(O) =+ Mto.,t1,t (q)(t()a tl)x(l) - I(O))]a (3)

whereMy, ¢, + = W (to,t)W~1(to,t1) [19]. The SLC prop-
erty of the origin then follows from taking the norm on both
sides of Eq. (3) forz(®) = 0 and upper-bounding the norm
of the integral (exponential) terms by the integral (expoene
tial) of the norm, which leads to tz(¢)| < C|j=™M)|| for

C = (t1 — to)||BBT|| - [W~t(to,t1)||. What sets the ori-
gin aside is that, for invertiblel, it corresponds to the only

window0 < ¢ < 1. Numerical control is declared successful
if the numerically calculated statet, ) is within a given dis-
tancen < ||z — 2(9)|| of the target state(!), where in our
simulations we us@ = 1076,

Figure 2 shows the average lendtlof the control trajecto-
ries. For typical initial stated, does not approach zero (and in
fact remains essentially constant) as the distance to tpets
is reduced, in stark contrast with the case in which thedhiti
state is at the origin [Fig. 2(a)]. This behavior becomesanor
pronounced when the number of driver nodes is small, reach-
ing L = 106 for ¢/n = 0.05. The average length decreases as
g is increased [Fig. 2(b)]. The latter is expected since ¢fell
ing our analytical argument above) the smatler ¢ the fewer

fixed point of the system. Having established the nonlocalhyperplanegAx); = 0 the control trajectory has to cross in

ity of control trajectories for typical states in generak mow
study in detail the minimal-energy control trajectories.

order to acquire the right sign @f.(¢) for everyk not directly
controlled.

We focus on undirected connected networks endowed with Given the mathematical equivalence of the Kalman’s rank

the dynamics in Eqg. (1) for matriceswith nonzero diagonal

condition and the invertibility of the controllability Gnaian,

elements. These networks generically satisfy the Kalman’sne might be tempted to assume that an ill-conditioned con-

controllability condition for a single control input. We 1©o

trollability Gramian W (to,t1) is a consequence of an ill-

sider Erdés-Rényi (ER) networks for a given number of ode conditioned Kalman’s controllability matri¥<. Here we



disprove this conjecture by showing that the controllapili (@)
Gramian can be nearly singular even when the corresponc
ing controllability matrix is well-conditioned. This is be
characterized by the reciprocal condition number As a
mathematically treatable example, we consider a direated |
ear chainC(n) containingn. nodes and no self-loops: —

2 = 3--- — n. We examine the control of this net-
work through the direct control of the root node, i.e., node T

1. The control matrix is such thaBz = 51,1’ and: as- onurﬁgeroﬁiontfginpﬁ?& qlo0 network size, n
suming for simplicity that the network is unweighted, ma-

rix Ais given by Ay = dijy forij = 1..n. It e o Reciprocal condition number of the controllabil@yamian
follows from Eq. (1) thatK' is then x n identity matrix.  yj; a5 function of (a) the number of control inputs for= 100 and
Therefore, K has full rank, has reciprocal condition num- () the network size for ER networks wittp = 10. Insets: relation
bery = 1, and is in fact the best conditioned of all ma- petween the average length of the control trajectories acignocal
trices. Now, considefV (to,t1). Taking for convenience condition number of¥ [panel (a)]; reciprocal condition number of

to = 0, we can show thatV(0,t;) = ftl g(1)g™ ()dr, W of the (analytically solvable) chain networks(n) for ¢ = 1
0 [panel (b)]. The statistics and parameters not shown aredhee
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=
o
reciprocal condition

where g(r) = [1,-7, S22, <(—Z[>1i)’!1,..., Q‘;}Sﬁ used in Fig. 2(b).

Thus, we can calculate the analytic expression for eacly entr

of the GramianiV' (0, ¢, );; = ~ (—;E)i“)'*(l . Forfixed Sharply from zero to one as the number of driver nodes is in-
: » V1) it -0 (G—D)I(G—1)!"

control timet,, the reciprocal condition numberof 17(0, #,) creased. According to the Kalman’s rank condition, all net-
b 1P . N ol works we simulate are controllable in theory fpas small
decreases exponentially as a function of the number of nodes

in the linear chain [Fig. 3(b), inset]. Therefore, as the %f 6;13 Ld The tran_3|t|(r)1n n F|dg_._4(a) 'S %dlre;:t rtl:onsequelrcbe_l_of
the linear chain increases, the controllability Gramiaitkjy the decrease In the condition number of the controllability

) e . Gramian and the limitation it imposes on numerical calcula-
becomes nearly singular, making the numerical control sf sy

tem (1) nearly impossible, even though the Kalman’s Comroltions. The numerical error in computing Eqg. (3) is dominated
. fly Impo ' tnoug by the round-off errors in the calculation & —!. Taking
lability matrix remains well-conditioned.

Figure 3 shows that this behavior is indeed general for thévz ét);?g using tilde to denote numerically computed values,

ER networks we consider. The reciprocal condition number

of W decreases exponentially as the number of control inputs |20 — 2O < DWW =W, (4)

is reduced [Fig. 3(a)] or the size of the network is increased

[Fig. 3(b)], while the reciprocal condition number &f (not ~ Wherez = ®(to, t1)z") — 20 and D = |[®(t1, )| - [|]].

Shown) is genera”y |arger thao/fy(W) [31] Moreover' it If W + AW is the exact inverse dﬂ/il, then the!lght side

follows that the average length of the control trajectoiges Of EQ. (4) is bounded from above by |AW| - [W || ~

strongly correlated with the condition number of the cohtro D||W | - [|[W 1| - %, where|W|| - W= = 1/4(W)

IabiIity_Gramian [Fig. 3(a), inset]. This can be rationaﬁlz_ and 121 is of the order of the numerical precisier32].

by noting that bothZ, and~ (W) are measures of how diffi- Thus”v\[//vHe dict that the transition t fl b

cultit is to actually control the system in practice. Theref » We predict that the transition 1o Successiul numerica

although the Kalman'’s controllability matrik” has attractive control will occur in general ag(W) decreases past

analytical properties, its use in practice requires cautim Ve R D'E , (5)

particular, since the minimum-energy control involvesitine n

version of the controllability Gramiai/ (rather than of the whereD’ is a constant determined by, z(?), 2(1), and A4,

Kalman’s controllability matrix), we claim that it is the au andn is the radius of convergence. For double precision and

merical rank ofl¥’ that is often most relevant. n = 1075, as considered in our simulations, the transition is
A full rank matrix is numerically rank deficient if one or predicted to occur aroung = 10~ for D’ of order unity,

more of its singular values fall below the predefined nunadric which agrees with our numerics.

threshold. In a matrix with a bounded largest singular value To further characterize this transition, we analyze itsttvid

a numerical rank smaller than the actual rank is necessarilwithin the network ensemble, defined 8§ = (¢ — q.)/n,

related to a small reciprocal condition numbgrsincey is  whereq. and ., mark the integer number of control inputs

the ratio of the smallest to the largest singular values. |&/hi right below 5% and right aboved5% success rate, respec-

leading to a deficient numerical rank for matiix wheng/n  tively. As shown in Fig. 4(b), the transition becomes insrea

is small, this is not a factor for matrik” because this matrix ingly sharp as the size of the network increases. The transit

is reasonably well-conditioned in the networks we considerpoint, which we take as being/n for the purpose of this dis-

indicating that the numerical calculation of its rank isi+el cussion, is around.20 and increases slowly asincreases.

able. Indeed, for all networks considered in Fig. 3 we vatifie  To address the impact of degree heterogeneity, we have

that the numerical rank oK is n for any numerical threshold also analyzed the controllability transition in SF netwsrks

smaller thanl0—3. shown in Fig. 4(c,d), the transition becomes wider as thie var
Figure 4(a) shows that the numerical success rate increasaace of the degree distribution increases (i®edecreases),




4

@ , » (0) 006 ‘ reducing the critical fraction of driver nodes/n at which

< 03 the numerical controllability transition takes place. $htan-
=08 iom tamount to the impossibility of long-term predictability i
g o6 s chaotic dynamics, this fundamental limitation cannot berev
§ 04 § 002 come by any realistic increase of precision, and becomes eve
3 02 2 I more pronounced for larger networks.

Second, subtle differences in the formulation of the dynam-

o o L o . :

0 20 40 60 80 100 120 140 50 100 150 200 250 300 ics in Eq. (1) have led to very different conclusions aboet th
number of control inputs, q network size, minimal number of driver nodes according to the Kalman’s

© 4 @ 4 03 rank condition, being generically one if the diagonal elatee

- 08 ;w wmoslaaa | pf A are nonzero [14, 18] and generally m_uch Iarger than one

g 06 £ ¢ if they are not [13, 33]. It is thus satisfying to find that in

2 2107 01 =35 45 55 1 practice the results are far more robust against small @sang

g o4 RE: B in the model parameters.

7 o2r 4 : E;g 18 Third, the nonlocality of linear control trajectories idien

— 10”7 : : : fied here reveals an intriguing mechanism of failure in apply
0 30 60 90 120 150 180 25 35 4.5 5.5 . . . . . .
number of control inputs, q power-law exponent, B ing control results from linearized dynamics to their noehr
counterparts [34]: such an approach fails because the con-
FIG. 4. Numerical controllability transitions for (a,b) ERtworks Frol trg]ectorlgs are re_qw_red t(.) go outside the neighbodho
of different sizes and (c,d) SF networks of different saglaxpo- " which the Imeanzatlon is valid. Moreover, there are \umo
nents. (a,c) Success rate as function of the number of donpats. ~ ©X@mples of nonlinear systems that are globally contrtelab
(b,d) Transition width (main panel) and transition poimts@t). The ~ While their linearization are not [35], and it is straightfo
average degree was setltvand, for the SF networks, = 300. The ~ ward to identify network systems too which have this prop-
statistics and parameters not shown are the same used @(F)g. erty [36]. It is thus natural to speculate that nonlineartoan
approaches (see, e.g., [37]), although generally morévado
indicating that control fails more often the more heteroge-and system-specific, can help lead to a framework bettexdsuit
neous the degree distribution [13], but the starting point oto address such systems.
the transition is very insensitive to the degree distrimutnd Our demonstration that either the control trajectory is-non
is essentially the same for ER and SF networks with the samiecal in the phase space or the control inputs are nonlocal in
network size and average degree [e.g., Fig. 4(c) with 4(a) fothe network has several implications. In practice, the farm
n = 300]. Moreover, these conclusions do not depend sensileads to failure of the numerical control and the latter oin
tively on how the driver nodes are selected: we have verifiedo an overhead that has to be accounted for in optimizing the
that the curves in Fig. 4(a,c) shift horizontally by lessttlee  number of driver nodes. For the random networks consid-
size of the symbols when the driver nodes are selected not raered here, this gives rise to a sharp transition as a funofion
domly but instead as the lowest- or the highest-degree nodalse number of driver nodes, below which numerical control
in the network. always fails and above which it succeeds. These findings sug-
A few observations are in order. First, one may ask whethegest the need of a controllability criterion that accounts n
the impossibility of controlling the system with a reduced only for the existence but also for the actual computabdity
number of driver nodes could be avoided by increasing théhe control interventions. We suggest that by applying such
precision of the numerical calculations. Because the recipcriterion future research may reveal a rich set of relatiogs
rocal condition numbet (W) decrease exponentially gds  tween controllability and network structure even when no de
reduced whiley. decreases only linearly ads reduced, any pendence is predicted by the Kalman’s rank condition.
realistic increase in precision will only have a small effiec This study was supported by NSF grant DMS-1057128.
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bility of a class of 3-dimensional affine nonlinear systeRm®c.
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