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A common goal in the control of a large network is to minimize the number of driver nodes or control inputs.
Yet, the physical determination of control signals and the properties of the resulting control trajectories remain
widely under-explored. Here we show that: (i) numerical control fails in practice even for linear systems if the
controllability Gramian isill-conditioned, which occurs frequently even when existing controllability criteria are
satisfied unambiguously; (ii) the control trajectories aregenerallynonlocal in the phase space, and their lengths
are strongly anti-correlated with the numerical success rate and number of control inputs; (iii) numerical success
rate increases abruptly from zero to nearly one as the numberof control inputs is increased, a transformation we
termnumerical controllability transition. This reveals a trade-off between nonlocality of the control trajectory
in the phase space and nonlocality of the control inputs in the network itself. The failure of numerical control
cannot be overcome by merely increasing numerical precision—successful control requires instead increasing
the number of control inputs beyond the numerical controllability transition.

PACS numbers: 89.75.Hc, 05.45.-a

A system is controllable if its state can be driven to dif-
ferent predefined states by a given set of input control sig-
nals, with controllability depending on both the number and
the placement of the control inputs [1]. Control often relies
on the promise that the direct manipulation of relatively few
degrees of freedom can render the entire system controllable.
This promise has special meaning in the study of complex net-
works, where the large total number of nodes contrasts with
the limited number that can be directly controlled due to cost
and physical constraints. The control of network systems is
important in applications as diverse as the operation of in-
frastructure networks [2], coordination of moving sensorsand
robots [3], devise of therapeutic interventions [4], manage-
ment of ecological networks [5], and control of cascading fail-
ures in general [6, 7], and it has received increased attention
in the recent physics literature [7–12].

A number of significant recent studies have focused on
networks withn-dimensional linear time-invariant dynam-
ics [13–16],

dx(t)

dt
= Ax(t) +Bu(t), (1)

with controllability usually determined by the Kalman’s con-
trollability matrix K =

[

B AB · · ·An−1B
]

[17]. Given the
matricesA andB, control inputsu(t) exist for any initial state
x(0) and target statex(1) if and only if K has full row rank.
In particular, if all nodes in a network have intrinsic dynamics
so thatAii 6= 0 for all i, it follows that generically there exists
u(t) such that the entire network can in theory be controlled
by a single control input [14, 18].

A fundamental question is, however, whether the control
signalsu(t) can actually be constructed in practice. At first
glance, this question may sound dull given that an explicit ex-
pression exists foru(t) corresponding to the minimal-energy
control trajectories int ∈ [t0, t1]:

u(t) = BTΦT (t0, t)W
−1(t0, t1)

[

Φ(t0, t1)x
(1) − x(0)

]

, (2)

whereW (t0, t1) =
∫ t1

t0
Φ(t0, t)BBTΦT (t0, t)dt is the con-

trollability Gramian andΦ(t′, t) = e(t
′−t)A [19]. Inciden-

tally, matrixW (t0, t1) being invertible [hence Eq. (2) being

well-defined] is equivalent to the commonly used Kalman’s
rank condition mentioned above. Quite surprisingly, despite
this explicit solution and formal equivalence, we show that
the determination ofu(t) is fundamentally limited in networks
with more than a handful of nodes. This calls for a careful re-
interpretation of existing controllability criteria.

Specifically, in this Letter we show that control fails in prac-
tice if the controllability Gramian is ill-conditioned, which
can occur even when the corresponding Kalman’s controlla-
bility matrix is well-conditioned. We also show that the con-
trol trajectory from an initial to a target state is generally non-
local in the phase space and remains finite-size (in fact very
long) even when the target state is brought arbitrarily close
to the initial one. The length

∫ t1

t0
‖ẋ(t)‖dt of such a trajectory

generally increases with the condition number of the Gramian.
Both the nonlocality of the control trajectory and control fail-
ure rate are reduced by increasing the number of control in-
puts. The latter manifests itself as a sharp transition as a func-
tion of the number of control inputs, below which numerical
control always fails and above which it succeeds. Aside from
its implications for control, the characterization of sucha nu-
merical controllability transition adds a new dimension tothe
research on structural [20], dynamical [21], and algorithmic
complexity [22] transitions in networks, which has had broad
impacts [23–25], with recent examples ranging from synchro-
nization and percolation to epidemic processes [26–30].

There are known factors that can cause control to fail, in-
cluding nonlinearity of the dynamics, parameter uncertainty,
and stochasticity. Our results show that even in the most favor-
able case, in which the system is deterministic, autonomous,
and linear, the disparity between theory and practice posesa
fundamental limit on our ability to control large networks.

We first establish the nonlocality of control trajectories.We
say that a statex(0) of system (1) is strictly locally control-
lable (SLC) if for any ballB(x(0), ε) of radiusε > 0 centered
atx(0) there is a radiusδ > 0 such that any targetx(1) inside
the concentric ballB(x(0), δ) can be reached fromx(0) with
a control trajectory entirely insideB(x(0), ε)—see Fig. 1(a).
Note that a state can be locally controllable, in the sense that
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FIG. 1. (a) Illustration of a state that is SLC (left) and of a state
that is not (right). (b) Example systeṁx1 = x1 + u1(t), ẋ2 =
x1, where any state not on the linex1 = 0 is not SLC; the curves
indicate minimal-energy control trajectories for the given initial state
(open symbol) and target states (solid symbols). The background
arrows indicate the vector field in the absence of control. Asthis two-
dimensional example suggests, almost all states of linear systems are
not SLC whenever the number of control inputs is smaller thanthe
number of dynamical variables.

control trajectories always exist for neighboring target states,
and yet not be SLC. Figure 1(b) shows one such example in
two dimensions: for a state in thex1 > 0 half-plane, the con-
trol trajectories to any neighboring target state with a smaller
x2-component necessarily cross into thex1 < 0 half-plane
(symmetric results apply to initial states in the other half-
plane).

We show that this result is in fact general for any control-
lable system in which one or more components are not di-
rectly controlled. Indeed, if thekth component is not directly
controlled, the initial states in the half-space(Ax)k > 0 can

only be driven to neighboring target states withx
(1)
k < x

(0)
k if

the control trajectory crosses into the half-space(Ax)k < 0,
since otherwisėxk(t) =

(

Ax(t)
)

k
would be nonnegative and

xk(t) would never decrease (analogous argument applies to
the other half-space). Therefore, all states outside the hyper-
plane(Ax)k = 0 are not SLC, and hence almost all states are
not SLC. The origin, on the other hand, is the only state that
is SLC for any control matrixB whenA is nonsingular. The
control trajectories defined by Eqs. (1)-(2), which minimize
the energy

∫ t1

t0
‖u(t)‖2dt, are given by

x(t) = Φ(t, t0)[x
(0) +Mt0,t1,t

(

Φ(t0, t1)x
(1) − x(0)

)

], (3)

whereMt0,t1,t = W (t0, t)W
−1(t0, t1) [19]. The SLC prop-

erty of the origin then follows from taking the norm on both
sides of Eq. (3) forx(0) = 0 and upper-bounding the norm
of the integral (exponential) terms by the integral (exponen-
tial) of the norm, which leads to to‖x(t)‖ ≤ C‖x(1)‖ for
C = (t1 − t0)‖BBT ‖ · ‖W−1(t0, t1)‖. What sets the ori-
gin aside is that, for invertibleA, it corresponds to the only
fixed point of the system. Having established the nonlocal-
ity of control trajectories for typical states in general, we now
study in detail the minimal-energy control trajectories.

We focus on undirected connected networks endowed with
the dynamics in Eq. (1) for matricesA with nonzero diagonal
elements. These networks generically satisfy the Kalman’s
controllability condition for a single control input. We con-
sider Erdős-Rényi (ER) networks for a given number of nodes
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FIG. 2. (a) Average length of the control trajectories as function of
the distance from the target when the initial states are awayfrom
the origin versus when they are at the origin. In the former case the
initial states were chosen randomly on the unit sphere centered at the
origin. In both cases the target states are randomly oriented δ apart
andq = 25. (b) Average length of the control trajectories as function
of the number of control inputs for initial states away from the origin
andδ = 10−2. Each data point corresponds to1, 000 realizations,
for ER networks withn = 100.

n and connection probabilityp. We address the impact of net-
work structure by also considering networks generated using
the configuration model [24] for scale-free (SF) degree dis-
tributionsP (k) ∼ k−β for k ≥ kmin, where in our simula-
tions the minimum degreekmin is chosen to keep the average
degree fixed asβ is varied. The edges and the diagonal el-
ementsAii are assigned weights drawn from a uniform dis-
tribution in [−1, 1]. Without loss of generality, we assume
that the nodes of the networks are one-dimensional dynamical
systems [i.e.,x(t) = (x1(t), x2(t), ..., xn(t)), wherexi(t) is
a scalar variable representing the state of nodei] and that the
control matrixB is diagonal upon row permutation, so that
there is a one-to-one relationship between control inputs and
driver nodes. For each network, numberq of driver nodes,
and given initial and target states, we calculate numerically
the minimal-energy control trajectories given by Eq. (3). Un-
less noted otherwise, we choose the driver nodes randomly
at each independent realization and consider the control time
window0 ≤ t ≤ 1. Numerical control is declared successful
if the numerically calculated statex(t1) is within a given dis-
tanceη ≪ ‖x(1) − x(0)‖ of the target statex(1), where in our
simulations we useη = 10−6.

Figure 2 shows the average lengthL of the control trajecto-
ries. For typical initial states,L does not approach zero (and in
fact remains essentially constant) as the distance to the targets
is reduced, in stark contrast with the case in which the initial
state is at the origin [Fig. 2(a)]. This behavior becomes more
pronounced when the number of driver nodes is small, reach-
ingL = 106 for q/n = 0.05. The average length decreases as
q is increased [Fig. 2(b)]. The latter is expected since (follow-
ing our analytical argument above) the smallern−q the fewer
hyperplanes(Ax)k = 0 the control trajectory has to cross in
order to acquire the right sign ofẋk(t) for everyk not directly
controlled.

Given the mathematical equivalence of the Kalman’s rank
condition and the invertibility of the controllability Gramian,
one might be tempted to assume that an ill-conditioned con-
trollability GramianW (t0, t1) is a consequence of an ill-
conditioned Kalman’s controllability matrixK. Here we
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disprove this conjecture by showing that the controllability
Gramian can be nearly singular even when the correspond-
ing controllability matrix is well-conditioned. This is best
characterized by the reciprocal condition numberγ. As a
mathematically treatable example, we consider a directed lin-
ear chainC(n) containingn nodes and no self-loops:1 →
2 → 3 · · · → n. We examine the control of this net-
work through the direct control of the root node, i.e., node
1. The control matrix is such thatBi = δ1,i and, as-
suming for simplicity that the network is unweighted, ma-
trix A is given by Aij = δi,j+1 for i, j = 1 . . . n. It
follows from Eq. (1) thatK is the n × n identity matrix.
Therefore,K has full rank, has reciprocal condition num-
ber γ = 1, and is in fact the best conditioned of all ma-
trices. Now, considerW (t0, t1). Taking for convenience
t0 = 0, we can show thatW (0, t1) =

∫ t1

0 g(τ)gT (τ)dτ ,

where g(τ) =
[

1,−τ, (−τ)2

2! , . . . , (−τ)i−1

(i−1)! , . . . , (−τ)n−1

(n−1)!

]T

.

Thus, we can calculate the analytic expression for each entry

of the Gramian:W (0, t1)ij = − (−t1)
i+j−1

(i+j−1)(i−1)!(j−1)! . For fixed
control timet1, the reciprocal condition numberγ of W (0, t1)
decreases exponentially as a function of the number of nodes
in the linear chain [Fig. 3(b), inset]. Therefore, as the size of
the linear chain increases, the controllability Gramian quickly
becomes nearly singular, making the numerical control of sys-
tem (1) nearly impossible, even though the Kalman’s control-
lability matrix remains well-conditioned.

Figure 3 shows that this behavior is indeed general for the
ER networks we consider. The reciprocal condition number
of W decreases exponentially as the number of control inputs
is reduced [Fig. 3(a)] or the size of the network is increased
[Fig. 3(b)], while the reciprocal condition number ofK (not
shown) is generally larger than

√

γ(W ) [31]. Moreover, it
follows that the average length of the control trajectoriesis
strongly correlated with the condition number of the control-
lability Gramian [Fig. 3(a), inset]. This can be rationalized
by noting that bothL andγ(W ) are measures of how diffi-
cult it is to actually control the system in practice. Therefore,
although the Kalman’s controllability matrixK has attractive
analytical properties, its use in practice requires caution. In
particular, since the minimum-energy control involves thein-
version of the controllability GramianW (rather than of the
Kalman’s controllability matrix), we claim that it is the nu-
merical rank ofW that is often most relevant.

A full rank matrix is numerically rank deficient if one or
more of its singular values fall below the predefined numerical
threshold. In a matrix with a bounded largest singular value,
a numerical rank smaller than the actual rank is necessarily
related to a small reciprocal condition numberγ, sinceγ is
the ratio of the smallest to the largest singular values. While
leading to a deficient numerical rank for matrixW whenq/n
is small, this is not a factor for matrixK because this matrix
is reasonably well-conditioned in the networks we consider,
indicating that the numerical calculation of its rank is reli-
able. Indeed, for all networks considered in Fig. 3 we verified
that the numerical rank ofK is n for any numerical threshold
smaller than10−3.

Figure 4(a) shows that the numerical success rate increases
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FIG. 3. Reciprocal condition number of the controllabilityGramian
W as function of (a) the number of control inputs forn = 100 and
(b) the network size for ER networks withnp = 10. Insets: relation
between the average length of the control trajectories and reciprocal
condition number ofW [panel (a)]; reciprocal condition number of
W of the (analytically solvable) chain networksC(n) for q = 1
[panel (b)]. The statistics and parameters not shown are thesame
used in Fig. 2(b).

sharply from zero to one as the number of driver nodes is in-
creased. According to the Kalman’s rank condition, all net-
works we simulate are controllable in theory forq as small
as1. The transition in Fig. 4(a) is a direct consequence of
the decrease in the condition number of the controllability
Gramian and the limitation it imposes on numerical calcula-
tions. The numerical error in computing Eq. (3) is dominated
by the round-off errors in the calculation ofW−1. Taking
t = t1 and using tilde to denote numerically computed values,
we obtain

‖x̃(1) − x(1)‖ / D‖W (W̃−1 −W−1)‖, (4)

wherez = Φ(t0, t1)x
(1) − x(0) andD = ‖Φ(t1, t0)‖ · ‖z‖.

If W + ∆W is the exact inverse of̃W−1, then the right side
of Eq. (4) is bounded from above byD‖∆W‖ · ‖W̃−1‖ ≈

D‖W‖ · ‖W−1‖ · ‖∆W‖
‖W‖ , where‖W‖ · ‖W−1‖ = 1/γ(W )

and ‖∆W‖
‖W‖ is of the order of the numerical precisionǫ [32].

Thus, we predict that the transition to successful numerical
control will occur in general asγ(W ) decreases past

γc ≈ D′ ǫ

η
, (5)

whereD′ is a constant determined byt1, x(0), x(1), andA,
andη is the radius of convergence. For double precision and
η = 10−6, as considered in our simulations, the transition is
predicted to occur aroundγ = 10−10 for D′ of order unity,
which agrees with our numerics.

To further characterize this transition, we analyze its width
within the network ensemble, defined as∆q ≡ (qc′ − qc)/n,
whereqc andqc′ mark the integer number of control inputs
right below 5% and right above95% success rate, respec-
tively. As shown in Fig. 4(b), the transition becomes increas-
ingly sharp as the size of the network increases. The transition
point, which we take as beingqc/n for the purpose of this dis-
cussion, is around0.20 and increases slowly asn increases.

To address the impact of degree heterogeneity, we have
also analyzed the controllability transition in SF networks. As
shown in Fig. 4(c,d), the transition becomes wider as the vari-
ance of the degree distribution increases (i.e.,β decreases),
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FIG. 4. Numerical controllability transitions for (a,b) ERnetworks
of different sizes and (c,d) SF networks of different scaling expo-
nents. (a,c) Success rate as function of the number of control inputs.
(b,d) Transition width (main panel) and transition point (inset). The
average degree was set to10 and, for the SF networks,n = 300. The
statistics and parameters not shown are the same used in Fig.2(b).

indicating that control fails more often the more heteroge-
neous the degree distribution [13], but the starting point of
the transition is very insensitive to the degree distribution and
is essentially the same for ER and SF networks with the same
network size and average degree [e.g., Fig. 4(c) with 4(a) for
n = 300]. Moreover, these conclusions do not depend sensi-
tively on how the driver nodes are selected: we have verified
that the curves in Fig. 4(a,c) shift horizontally by less than the
size of the symbols when the driver nodes are selected not ran-
domly but instead as the lowest- or the highest-degree nodes
in the network.

A few observations are in order. First, one may ask whether
the impossibility of controlling the system with a reduced
number of driver nodes could be avoided by increasing the
precision of the numerical calculations. Because the recip-
rocal condition numberγ(W ) decrease exponentially asq is
reduced whileγc decreases only linearly asǫ is reduced, any
realistic increase in precision will only have a small effect in

reducing the critical fraction of driver nodesqc/n at which
the numerical controllability transition takes place. Thus, tan-
tamount to the impossibility of long-term predictability in
chaotic dynamics, this fundamental limitation cannot be over-
come by any realistic increase of precision, and becomes even
more pronounced for larger networks.

Second, subtle differences in the formulation of the dynam-
ics in Eq. (1) have led to very different conclusions about the
minimal number of driver nodes according to the Kalman’s
rank condition, being generically one if the diagonal elements
of A are nonzero [14, 18] and generally much larger than one
if they are not [13, 33]. It is thus satisfying to find that in
practice the results are far more robust against small changes
in the model parameters.

Third, the nonlocality of linear control trajectories identi-
fied here reveals an intriguing mechanism of failure in apply-
ing control results from linearized dynamics to their nonlinear
counterparts [34]: such an approach fails because the con-
trol trajectories are required to go outside the neighborhood
in which the linearization is valid. Moreover, there are known
examples of nonlinear systems that are globally controllable
while their linearization are not [35], and it is straightfor-
ward to identify network systems too which have this prop-
erty [36]. It is thus natural to speculate that nonlinear control
approaches (see, e.g., [37]), although generally more involved
and system-specific, can help lead to a framework better suited
to address such systems.

Our demonstration that either the control trajectory is non-
local in the phase space or the control inputs are nonlocal in
the network has several implications. In practice, the former
leads to failure of the numerical control and the latter points
to an overhead that has to be accounted for in optimizing the
number of driver nodes. For the random networks consid-
ered here, this gives rise to a sharp transition as a functionof
the number of driver nodes, below which numerical control
always fails and above which it succeeds. These findings sug-
gest the need of a controllability criterion that accounts not
only for the existence but also for the actual computabilityof
the control interventions. We suggest that by applying such
criterion future research may reveal a rich set of relationsbe-
tween controllability and network structure even when no de-
pendence is predicted by the Kalman’s rank condition.

This study was supported by NSF grant DMS-1057128.
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