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We use large scale quantum Monte Carlo simulations to study an extended version of the canonical
Shastry-Sutherland model – including additional interactions and exchange anisotropy – over a
wide range of Hamiltonian parameters and applied magnetic field. The model is appropriate for
describing the low energy properties of some members of the rare earth tetraborides. Working
in the limit of large Ising-like exchange anisotropy, we demonstrate the stabilization of columnar
antiferromagnetic (CAFM) order in the ground state at zero field and an extended magnetization
plateau at m/ms = 1/2 in the presence of an applied longitudinal magnetic field – qualitatively
similar to experimentally observed low-temperature phases in ErB4. Our results show that for
an optimal range of exchange parameters, a spin supersolid ground state is realized over a finite
range of applied field between the CAFM phase and the magnetization plateau. The full momentum
dependence of the longitudinal and transverse components of the static structure factor is calculated
in the spin supersolid phase to demonstrate the simultaneous existence of diagonal and off-diagonal
long-range order. Our results will provide crucial guidance in designing further experiments to
search for the interesting spin supersolid phase in ErB4.

PACS numbers: 75.30.Kz,02.70.Ss

Ever since Penrose and Onsager [1] speculated on the
possible coexistence of diagonal and off-diagonal long
range order, supersolid order has been of broad interest
within the physics community. Although the initial in-
spiration for this exotic type of ordering originated from
the consideration of the remarkable properties of solid
helium, the realization of a supersolid phase of helium
remains controversial. [40] On the other hand, theoretical
studies of several models of lattice bosons with competing
interactions have conclusively established the presence of
supersolid phases over extended parameter regimes. [2–8]
In this case, the discreteness of the lattice simplifies the
process of forming a supersolid, and the bosonic mod-
els can potentially be experimentally realized with cold
atoms in optical lattices. Concurrently, the realization
of BEC of magnons and other novel bosonic phases in
quantum magnets provides an alternative route to this
elusive state of matter via the spin analog of the super-
solid phase. [9–16] Yet to date, no experimental system
has been found that displays unambiguous signs of su-
persolid ordering. Hence, the identification of realistic
systems with supersolid order is a valuable step towards
the ultimate realization of this elusive phase.

A key element in the stabilization of a supersolid
ground state in many models is geometric frustration, [3–
8, 10, 13, 15–17] which makes frustrated quantum mag-
nets the natural place to look for the spin supersolid
phase. The rare-earth tetraborides (RB4) are a promis-
ing class of materials for studying the effects of geomet-
ric frustration in interacting spin systems. RB4 com-
pounds consist of weakly coupled layers of magnetic mo-
ment carrying R3+ ions arranged in a distorted square
lattice geometry with additional bonds along the orthog-
onal diagonals of alternate plaquettes [18] – a pattern

that is topologically equivalent to the Shastry-Sutherland
lattice (SSL). [19] Several members of this family have
been observed to exhibit magnetization plateaus at low
temperatures. For example, both ErB4 and TmB4 ex-
hibit an extended magnetization plateau at m/ms =
1/2. [20, 21] However, additional fractional magnetiza-
tion plateaus have been observed in TmB4 that are not
seen in ErB4. Further, recent neutron scattering exper-
iments have determined the low temperature zero-field
magnetic structure of TmB4 to be collinear and antiferro-
magnetic (AFM) with a Q = (π, π) ordering of the local
moments, [22, 23] i.e. a staggered AFM (SAFM) state. In
contrast, it is well-documented that the magnetic order
of the zero-field ground state in ErB4 is a columnar AFM
(CAFM) pattern with Q = (π, 0) or Q = (0, π). [20, 24]

Previous studies have shown that the low temperature
magnetic properties of TmB4 can be explained by an
effective low energy model obtained by extending the
canonical Shastry-Sutherland model (SSM) [19] to in-
corporate ferromagnetic (FM) transverse exchange with
Ising-like anisotropy and additional long range interac-
tions. [25, 26] The additional interactions are instrumen-
tal in stabilizing an extended magnetization plateau at
m/ms = 1/2, while at the same time eliminating the
magnetization plateau at m/ms = 1/3 that is ubiquitous
to the canonical SSM in the Ising limit. [27, 28] Similar
generalizations are expected to capture the low-energy
properties of other members of the RB4 family. Thus,
it is useful to extend the results of this effective model
to include magnetization processes that begin from the
zero-field CAFM state.

In this Letter, we determine the parameter regime of
the effective model for RB4 for which CAFM ordering
is stabilized in the absence of an external field. We
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present large scale quantum Monte Carlo (QMC) sim-
ulations of the magnetization process in this regime and
demonstrate the appearance of a field-induced spin su-
persolid phase at magnetizations below m/ms = 1/2.
Arguing that similar factors may drive the stabilization
of columnar order in ErB4, we identify ErB4 as a promis-
ing candidate for the observation of supersolid order.

The R3+ ions typically carry a large magnetic mo-
ment, e.g., J = 6 for Tm3+ and J = 15/2 for Er3+.
In many of these compounds, a strong crystal electric
field introduces a single-ion anisotropy D that splits the
local Hilbert space at each site into degenerate doublets.
Successive doublets are separated by energy gaps ∼ D.
To a first approximation, then, the low-energy magnetic
interactions are captured by an Ising model comprised
of the maximal-J doublet. Higher order processes lead
to weak FM (AFM) transverse exchange interactions be-
tween neighboring sites for integer (half-odd integer) val-
ues of J , and thus the S = 1/2 XXZ model with Ising-
like exchange anisotropy becomes the preferred model to
study the low-energy magnetic properties of ErB4 and
TmB4, both of which possess a large easy-axis single-ion
anisotropy. [29]

The above model can be described by the Hamiltonian

H =

4∑
α=1

∑
〈ij〉α

[
− |Jα∆| (Sxi Sxj + Syi S

y
j ) + JαS

z
i S

z
j

]
−hz

∑
i

Szi , (1)

where the summation is over all bond types α of strength
Jα and their associated bonds 〈ij〉α [Fig. 1(a)]. We work
in the experimentally relevant limit of strong Ising-like
exchange anisotropy, ∆ � 1, and consider the effect
of an external magnetic field hz. Since the RB4 crys-
tal structure is such that the bonds of the canonical
SSL are expected to be of roughly equal strength, we
set J1 = J2 = 1, and all parameters are given in these
units. [41] In addition to the canonical interactions J1
and J2 of the SSM, we include the interactions J3 and
J4. As shown below, J3 is the primary interaction driving
the CAFM state. The role of J4 is to stabilize the mag-
netic states. Extensive simulations (not shown here) in
the J3−J4 parameter space have shown that J4 < 0 gen-
erates a sequence of plateaus that qualitatively matches
the experimental data for ErB4. On the other hand, even
a small J4 > 0 leads to a different sequence of plateaus.
Interestingly, J4 < 0 was found to be instrumental in ex-
plaining the magnetic properties of TmB4. [25, 26] Such
a long range interaction is intuitively expected to arise
from RKKY interactions in the RB4 compounds medi-
ated by the itinerant electrons. [22]

In this work, we restrict ourselves to the case of FM
transverse exchange interactions, to avoid the negative
sign problem in QMC simulation. This is in contradic-
tion to the effective transverse exchange in ErB4. How-
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FIG. 1: (Color online) (a) The bonds J1, J2, J3, and J4 are
illustrated as solid blue, thick green, dotted red, and dashed
black lines, respectively. For clarity, only a single J4 bond is
shown. (b) First and second order hopping processes in the
1/2 plateau (HP) phase. White (black) circles represent up
(down) spins, while an “x” marks spins that may be flipped
with minimal energy cost. Here, the bonds J1, J3, and J4 are
omitted for clarity.

ever, it was shown recently [7, 8] that in the Ising limit,
an AFM transverse exchange maps on to a FM trans-
verse exchange in the triangular lattice XXZ model. As
demonstrated later, similar arguments also hold for the
present work.

To characterize the different phases of H, longitudinal
and transverse components of the static structure factor
are defined as

S+−(k) =
1

N

∑
i,j

〈S+
i S
−
j + S−i S

+
j 〉e

ik·(ri−rj),

Szz(k) =
1

N

∑
i,j

〈Szi Szj 〉eik·(ri−rj). (2)

In the Sz basis, these serve as measures of off-diagonal
and diagonal order, respectively. As the uniform magne-
tization per site is simply m =

∑
j〈Szj 〉/N , here we note

that Szz(0, 0) = N〈m2
z〉. Further, we define staggered

and columnar magnetizations as m2
s = Szz(π, π)/N and

m2
c = [Szz(0, π) + Szz(π, 0)] /N , respectively.
QMC simulations are performed using the stochas-

tic series expansion algorithm with directed loop up-
dates. [30] The correlations 〈S+

i S
−
j + S−i S

+
j 〉 and

〈Szi Szj 〉 can be straightforwardly computed within this
method [31, 32]. A useful observable in characteriz-
ing the ground state phases in numerical simulations
is the spin stiffness, ρs, defined as the response to a
twist in the boundary conditions. [33] In simulations
that sample multiple winding number sectors, the eval-
uation of the stiffness simplifies to calculating the wind-
ing number of the world lines, leading to the expression
ρs =

(
w2
x + w2

y

)
/4β in two dimensions, [34] where wx and

wy are the winding numbers in the x and y directions.
We begin by mapping out a phase diagram for H with

J4 = 0 to show that J3 is sufficient to stabilize the CAFM
ground state. In the Ising limit, we can construct the
ground states by hand. By comparing their respective
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energies, the hz − J3 phase diagram is determined (see
Fig. 2). This provides a backdrop of classically ordered
magnetic states upon which to study the effect of quan-
tum fluctuations. The zero-field ground state is SAFM
for J3 < 1/2 and CAFM for J3 > 1/2. For small |J3|
there is a field-induced magnetic phase transition to a
third plateau (TP) with m/ms = 1/3. With increas-
ing field, this state further evolves into a half plateau
(HP) with m/ms = 1/2, except at J3 = 0, where there
is a direct transition to the fully polarized (FP) state
(m/ms = 1). [35] At large |J3| the magnetization process
skips the TP, with a direct transition from the zero-field
ground states to the HP. Notice that two distinct mag-
netic structures are possible in the HP state. [36] For
J3 < 0 the HP consists of diagonal stripes with staggered
order, while for J3 > 0 the HP consists of alternating FM
and AFM stripes with columnar order (the AFM stripes
are free to align or anti-align, resulting zero net staggered
order). Thus, the two HP states mirror the order of the
underlying zero-field ground states (SAFM and CAFM,
respectively).

Turning to the case of finite ∆ = 0.10, QMC sim-
ulations are performed to determine the ground state
quantum phase diagram. In Fig. 2, the numerically de-
termined phase boundaries are marked by data points,
while three emergent phases with transverse ferromag-
netic order (i.e. superfluid) are delineated by dashed
lines. The first emergent phase (red squares) occurs pri-
marily for J3 > 0, where a superfluid (SF) phase opens
up between the HP and FP phases. A similar phase de-
velops between the CAFM and HP phases for J3 ≥ 0.9.
This second emergent phase (blue diamonds) is actually
a spin supersolid (SS) phase, possessing both superfluid
and columnar AFM order. A third emergent phase (green
triangles) with superfluid ordering occurs at the border
of the SAFM, CAFM, and TP phases.

Focusing on the experimentally relevant parameter
regime for ErB4 (J3 > 1), the introduction of J4 < 0 is
desirable to stabilize the magnetization process (as dis-
cussed earlier, long range interactions such as J4 are ex-
pected to be non-negligible due to RKKY effects, and
J4 > 0 leads to a qualitatively different sequence of mag-
netization plateaus). The main result of J4 < 0 is to
stabilize the HP such that the AFM stripes align, as in
Fig. 1(b). In Fig. 3 we show the magnetization process
for ∆ = 0.10, J3 = 1.25, and J4 = −0.05. Here, the
zero-field ground state is the CAFM phase with m2

c near
its maximal value of 0.25. As the magnetic field is in-
creased, there is a field-induced first-order phase transi-
tion from the CAFM phase to the SS phase, as evidenced
by discontinuous jumps in the magnetic observables. In
the SS phase, m2

c is reduced, yet remains finite, and m2
s

becomes non-zero, even as a non-zero spin stiffness devel-
ops. These are signs of supersolid order, which we care-
fully consider in the next paragraph. After a continuous
transition to the HP state, diagonal order remains while
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FIG. 2: (Color online) Phase diagram in the Ising limit (solid
black lines) along with modifications for the XXZ model
at Ising-like anisotropy ∆ = 0.10 (data points and color-
ful dashed lines). The saturation field from the superfluid
phase is hs = (5/2 + J3) (1 + ∆), while the remaining quan-
tum phase boundaries are drawn as guides to the eye.

superfluid order is eliminated. Next, a first-order phase
transition (with accompanying jumps in the magnetic ob-
servables) eliminates all remaining diagonal magnetic or-
der, and the HP gives way to a SF phase with off-diagonal
ordering. Finally, there is a continuous phase transition
from the SF to the FP state. Although both continu-
ous phase transitions (SS-HP and SF-FP) are expected
to belong to the BEC universality class, their numeric
confirmation is outside the scope of the present work.
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FIG. 3: (Color online) Columnar (m2
c), staggered (m2

s), and
uniform (m) magnetization, along with spin stiffness (ρs), for
the complete magnetization process at ∆ = 0.10, J3 = 1.25,
J4 = −0.05, and inverse temperature β = 64. The sequence
of phases with increasing magnetic field is columnar AFM,
supersolid, half plateau, superfluid, and fully polarized. In-
sets: Finite-size scaling of m2

c , m2
s, and ρs. Dashed lines are

fits to the form a+ b/L.

A supersolid is defined by the simultaneous occurrence
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FIG. 4: (Color online) Transverse and longitudinal structure
factors in the spin supersolid phase, with S+−(k) and Szz(k)
as defined in Eq. 2. Data are taken from a 32x32 lattice
at inverse temperature β = 100 with ∆ = 0.10, hz = 1.75,
J3 = 1.25, and J4 = −0.05.

of diagonal and off-diagonal long-range order. To confirm
that the present spin supersolid phase satisfies this prop-
erty, we calculate the full static structure factors of the
transverse and longitudinal degrees of spin freedom (S+−

and Szz, respectively). As seen in Fig. 4, it is clear that
both structure factors possess ordering. The transverse
ordering is primarily at k = (0, 0), with a secondary peak
at k = (π, π) due to modulation by the diagonal order.
The peaks in Szz simply reflect the longitudinal magnetic
ordering (m2

c 6= 0 and m2
s 6= 0) and finite magnetization

(m 6= 0) of the SS phase.

The mechanism for superflow in the SS phase can fur-
ther explain the observed features of the transverse and
longitudinal structure factors. Since the SS phase oc-
curs at magnetizations just below half saturation, the
mechanism for supersolid formation can be determined
by considering the hopping processes available when the
HP state is doped with down spins. The lowest poten-
tial energy doping sites in the HP phase are marked by
an “x” in Fig. 1(b). It is clear to see that down spins
at these sites can easily delocalize by first order pro-
cesses. Furthermore, these sites form an unfrustrated
sublattice, naturally explaining the secondary peak in
S+− at k = (π, π). Another consequence of this unfrus-
trated sublattice of first order hopping processes occurs

as we approach the Ising limit (∆ → 0), where higher
order hopping processes are suppressed. Here, models
with AFM and FM transverse exchange become essen-
tially equivalent, and QMC results with FM transverse
exchange can be mapped to the case of AFM transverse
exchange. This can also be seen by projecting H onto
the Ising ground state manifold, [8] whereby higher-order
processes are explicitly forbidden. We have confirmed
this equivalence through exact calculations for systems
up to L = 6, and see no difference in the magnetic prop-
erties for AFM and FM transverse exchange in this limit.

The model Hamiltonian H can be mapped onto a sys-
tem of hardcore bosons with nearest-neighbor hopping
t = − |Jα∆| /2 and repulsion V = Jα. For such a system
on the triangular lattice it has been shown [3–6] that a
supersolid phase is stabilized for weak hopping t� V or
∆ � 1 (a supersolid phase is also found for frustrated
hopping t > 0 [7, 8]). Similarly, a square lattice model of
hardcore bosons with next-nearest-neighbor repulsion is
known to possess both columnar AFM and supersolid
phases. [17] While no such supersolid state has been
found for hardcore bosons on the canonical SSL, [37] we
have demonstrated the formation of a supersolid phase
on the extended SSL.

Let us return to the magnetic properties of ErB4, which
has a zero-field CAFM ground state and a single plateau
at m/ms = 1/2. We have shown that such properties
are captured by an extended SSM with J3 > 1 and
J4 < 0. The numerically determined magnetization pro-
cess in this regime compares well to experimental ob-
servations. [20] This agreement is not only qualitative,
but also quantitative: the relative extent of the HP state
is ∆h1/2/hs ∼ (3.5 − 2)/4 or 38% in our model vs.
∆h1/2/hs ∼ (4 − 2)/5 or 40% in experiment [20]. The
close agreement of the two magnetization processes leads
us to speculate that the spin supersolid phase we have
demonstrated in the model may also be present in the
material. Although no estimates are known for the ex-
change parameters in ErB4 (aside from the geometrically
justified approximation of J1 ≈ J2), considering the elec-
tronic structure of RB4 compounds, [18] it is plausible
to expect J3 > 1. We hope that our results will en-
courage further experimental studies of this compound.
Finally, we note that superfluid ordering in the effective
spin model corresponds to ferronematic order in the total
angular momentum of the material. [38]
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