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Elastic backscattering of electrons moving along the helical edge is prohibited by time-reversal
symmetry (TRS). We demonstrate, however, that an ensemble of magnetic impurities may cause
TRS-preserving quasi-elastic backscattering, resulting in interference effects in the conductance. The
characteristic energy transferred in a backscattering event is suppressed due to the RKKY interaction
of localized spins (the suppression is exponential in the total number of magnetic impurities). We
predict the statistics of conductance fluctuations to differ from those in the conventional case of a
one-dimensional system with quenched disorder.

A two dimensional topological insulator is defined
by the presence in its electronic spectrum of helical
edge states protected against elastic backscattering by
time-reversal symmetry (TRS). One fundamental con-
sequence, also perceived as a smoking-gun experimen-
tal signature of a topological insulator, is the universal-
ity of its zero-temperature conductance. Actual experi-
ments clearly distinguish between topological insulators
and highly-resistive “conventional” ones [1]. However,
the measured conductance approaches the universal value
only in very short (less than 1µm long) samples. In longer
samples the conductance is suppressed, presumably by
electron backscattering.

Mechanisms of such backscattering are a matter of on-
going debate. Current proposals involve the Coulomb
interaction between the electrons [2–6] and electron scat-
tering off a localized magnetic impurity [7–9]. In these
theoretical models the electron backscattering is either
deeply inelastic [2–6] or, as in the case of a magnetic im-
purity at temperatures exceeding the Kondo scale, quasi-
elastic and incoherent [7, 8]. As a result, none of the
proposed mechanisms can lead to quantum interference
effects (for example, mesoscopic fluctuations of the sam-
ple conductance G) ubiqutous in other conductors.

Here we show that the conductance of a helical edge
can, in fact, display pronounced quantum interference ef-
fects. This requires the sample to be contaminated with
magnetic impurities of large spin, S > 1, experiencing
uniaxial single-ion anisotropy. An ensemble of such im-
purities, coupled by the RKKY interaction, forms a rigid
block seen as one composite scatterer by an electron at
the edge. The form-factor of such an extended object
contains interference terms leading to mesoscopic fluctu-
ations in the backscattering rate as a function of the elec-
tron energy. Respecting the TRS, the electron scattering
remains inelastic, however the associated energy transfer
is strongly suppressed setting a very mild lower bound
for the temperature at which the considered mechanism
is effective.

In this work we focus on the interference-induced meso-
scopic fluctuations of the conductance of a helical edge as
a function of the chemical potential of electrons. In con-
ventional one-dimensional wires such fluctuations arise
from rapidly varying interference conditions in the elec-
tron scattering amplitudes and are pronouncedly non-
Gaussian. In particular, when backscattering is weak
they obey the Rayleigh statistics. In contrast, we find
that the fluctuations of G caused by an ensemble of mag-
netic impurities are nearly Gaussian except for tempera-
tures close to the spin-glass crossover.

We consider a topological insulator with a simple heli-
cal edge [1, 2] such that the spin s of an electron occupy-
ing an edge state has a conserved component sz in some
fixed direction ẑ. A magnetic impurity in the vicinity of
the edge experiences a local single-ion anisotropy induced
by the bulk spin-orbit coupling and a local anisotropic ex-
change coupling to the electrons of the edge. The effec-
tive low-energy Hamiltonian describing the helical edge
with N magnetic impurities is

H = H0 −
N∑
i=1

K
(
n · Si

)2
+ ~v

N∑
i=1

κiabS
i
aσb(xi) , (1)

H0 = ~v
∫
dxψ†(x)(−iσ̂3∇)ψ(x) . (2)

Here the two-component spinor ψ(x) represents the
smooth at Fermi wave length scale, 2π/kF , en-
velope of the electron field operators; σ(x) =
ψ†(x)e−ikFσzxσ̂eikFσzxψ(x) is the electron spin density
operator, and σ̂ is the spin vector composed of the three
Pauli matrices; v is the electron velocity, Si is the i’th
impurity spin. We will see that the appearance of inter-
ference effects caused by magnetic doping requires the
magnetic anisotropy to be uniaxial (K > 0) with an
axis n different from ẑ; and the impurities to have spin
S > 1. We assume the magnetic impurities to be ran-
domly distributed along the sample length L, resulting in
random positions xi and coupling constants κiab. In gen-
eral, the exchange tensors κiab and the tensor of single-ion
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anisotropy should be considered as running coupling con-
stants, depending on the choice of the bandwidth cutoff.
The renormalization of the anisotropy is not infrared-
divergent resulting in a ultraviolet correction to Eq. (1)

HA =

N∑
i=1

δKi
abS

i
aS

i
b , |δKi| ∼ |κi|2EG , (3)

where the insulator band gap EG sets the ultraviolet cut-
off scale. Renormalization of κ̂i is infrared divergent,
however it can be neglected if the associated Kondo scale,
TK ∼ EGe−1/|κ|, is smaller than the characteristic energy
of the RKKY exchange mediated by the itinerant elec-
trons N~v|κ|2/L.

We begin our analysis with considering two impurities
at distance x from each other. Assuming that |κ̂i| � 1,
the RKKY exchange between two localized spins is [10]

HRKKY = − ~v
4π|x|

S1
aκ

1
abωbc(x)Pcdκ

2
edS

2
e . (4)

Here ωbc(x) is the orthogonal matrix of counterclock-
wise rotation through angle 2kFx about the z axis and
Pcd = δcd − δczδdz is the matrix of orthogonal projec-
tion onto the xy plane. Next, we determine the low-
energy spectrum of the two-spin system, assuming that
HRKKY, Eq. (4), and HA, Eq. (3), are small as com-
pared to the easy-axis anisotropy K. In the zeroth-order
perturbation theory the ground state of the two-spin
system is four-fold degenerate with the corresponding
eigenspace spanned by four vectors, | ± S〉1 ⊗ | ± S〉2,
where |s〉i denotes an eigenstate of Si · n with an eigen-
value s ∈ {−S,−S + 1, . . . , S − 1, S} and the subscript
i = 1, 2 labels the Hilbert space attached to the ith spin.
The secular matrix of the perturbation Eq. (4) written
in terms of the operators

ŝi = |S〉i〈S|i − | − S〉i〈−S|i i = 1, 2, (5)

takes the form of the Ising Hamiltonian

HI = −δE cos(2kFx)ŝ1ŝ2 , (6)

where δE = (~v/4π|x|)naκ1
abPbcκ

2
cdnd. The spectrum of

the Hamiltonian (6) consists of two doublets |S〉1⊗ |S〉2,
|−S〉1⊗|−S〉2 and |S〉1⊗|−S〉2, |−S〉1⊗|S〉2 separated
by the energy 2δE, with the ground state doublet chosen
by the sign of cos(2kFx). Note that for any S > 1 the
the perturbation Eq. (3) has no effect on the splitting of
the ground level.

In higher-order perturbation theory further splitting
of the two doubly degenerate energy levels occurs. The
dominant effect here is due to the perturbation (3). In-
deed, it has non-vanishing matrix elements for transitions
in which the projection of one impurity spin increases (or
decreases) by 1 or 2. For S > 1 any such transition takes
a vacuum state to a virtual state having the energy of the

order K. At least [S − 1/2] such consecutive transitions
(here the symbol [. . . ] stands for the integer part of S)
are needed in order to flip one impurity spin from −S to
S, that is to bring the system from a ground state to a
state in the excited doublet with the energy 2δE. Taking
such processes into account amounts to introducing an
off-diagonal correction to the Hamiltonian (6)

∆H = δK

(
δK

K

)[S−1/2] ∑
i=1,2

ri|S〉i〈−S|i , (7)

where ri are some constants of the order of unity. This
will result in a finite energy spacing between levels in
each doublet

ε ∼ δK
(
δK

K

)2[S−1/2]
δK

|δE|
, (8)

which will remain small compared to δE as long as
|x| � (~v/∆) × (K/δK)[S−1/2]. We emphasize that the
appearance of two nearly-degenerate doublets in the low-
energy spectrum is the direct result of large spin, S > 1,
and uniaxial anisotropy of sufficient strengths, δK . K.

Consider now the combined dynamics of electrons and
spins at energies E � min(~v/x,K). It is described by
the Hamiltonian Heff = H0 +HI + ∆H+ U with

U = ~v
∑
i=1,2

ŝiψ
†(xi)(ξi · τ )ψ(xi) , (9)

where ξi = [Pω(xi)κ
i]n. The z-component of ξi has no

effect on electron backscattering therefore we discard it

ξi = ξi · (cos 2kFxi, sin 2kFxi, 0) . (10)

At temperatures T � ε we may neglect the term ∆H in
Heff . In this limit, variables ŝi are constants of motion
and can be treated as numbers. The backscattering cur-
rent is then found as the Gibbs average over four distinct
configurations of ŝi. In the Born approximation this gives
the conductance correction

δG = −e
2

h

[
ξ2
1 + ξ2

2 + 2(ξ1 · ξ2)η
]
. (11)

The term 2(ξ1 · ξ2)η here comes from the interference
between the electron waves reflected by the two local
magnetic moments. The factor (ξ1 · ξ2) experiences the
conventional Fabry-Pérot oscillations as a function of the
Fermi momentum kF with the period 2π/|x|. The factor
η = tanh[δE cos(2kFx)/T ] oscillates with the same pe-
riod and results in a deviation of the overall oscillatory
behavior from the simple harmonic law.

At temperatures, T . ε, effects of ∆H, Eq. (7), be-
come important. The degeneracy of the ground state is
lifted and electron backscattering becomes deeply inelas-
tic with the energy transfer ε in a chirality flip process.
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In this regime the conductance correction evaluated by
means of non-equilibrium perturbation theory is [10]

δG = −e
2

h

[
ξ2
1 + ξ2

2 + 2(ξ1 · ξ2)η
]
F
(
ε
T

)
(12)

with

F
(
ε
T

)
=

∫ ∞
−∞

dλ
2 cosh2(λ)

[cosh (ε/T ) + cosh(2λ)]
2 . (13)

At T � ε the backscattering correction is exponentially
suppressed, F (ε/T ) ∼ exp(−ε/T ). In the opposite limit
ε → 0 the function F → 1 in agreement with Eq. (11)
obtained in the ∆H = 0 approximation. Hereinafter we
assume [12] T � ε.

Next, we consider a system of N > 2 magnetic im-
purities statistically uniformly distributed with average
density n = N/L along the edge of length L. Focusing on
the energy scales E . ~vn we write the effective Hamil-
tonian as Heff = H0 +HIsing + ∆H + U , where ∆H and
U are defined by Eqs. (7) and (9) (with extension of the
summation to N), and

HIsing = −~v
4π

∑
i<j

ξiξj cos 2kF (xi − xj)
|xi − xj |

ŝiŝj , (14)

with ξi defined in Eq. (10). The conductance correction
evaluated in the Born approximation is

δG = −e
2

h

∑
i,j

ξiξj cos 2kF (xi − xj)〈ŝiŝj〉 , (15)

where 〈ŝiŝj〉 is the equilibrium spin-spin correlation func-
tion for Hamiltonian (14). The Born approximation is
valid for Nξ2 � 1, where ξ is the typical value of ξi.

It follows from Eq. (15) that in a given sample the con-
ductance correction δG, should exhibit pseudo-random
fluctuations with changing kF due to the oscillatory fac-
tors in both Eq. (15) and HIsing, see Eq. (14). The sta-
tistical properties of such fluctuations are fully encoded
in the cumulants

Gm = lim
λ→0

dm

dλm
ln exp(λ · δG) (16)

where the overline represents the statistical average. We
now demonstrate that the statistical properties of con-
ductance fluctuations of the magnetically contaminated
helical edge are drastically different from those of a con-
ventional one-dimensional conductor.

First, we recall the structure of conductance fluctua-
tions caused by an ensemble of weak quenched scatter-
ers in a usual one-dimensional conductor. At temper-
atures such that the coherence length and the thermal
length ~v/T are both greater than the sample length
the conductance is temperature-independent. The elec-
tron reflection amplitude is, in the Born approximation,
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FIG. 1: MC data for the statistics of the mesoscopic con-
ductance fluctuations at different temperatures and system
sizes. In panel (a) shown is the average conductance g1 as a
function of temperature. The asymptotes given by Eq. (20)
are shown for comparison as solid black lines. Panels (b)
shows the second cumulant g2 of the conductance distribu-
tion. Panel (c) shows the dependence of the first three cu-
mulants at T = 0.5TSG on the system size. The log-log plot
shows a good fit with the gm ∼ Nm+1 scaling. Panel (d)
shows the skewness of the distribution of conductance values
as a function of temperature.

a linear superposition of N random complex numbers,
eikF xi , where xi is the position of the ith impurity. Con-
sequently, in the large-N limit the conductance correc-
tion obeys the Rayleigh distribution, which is essentially
non-Gaussian. In particular, for the second and third

cumulants one has G3 = −2G
3/2
2 .

In contrast, fluctuations of the conductance Eq. (15),
exhibit strong temperature dependence in the whole va-
lidity range of the model (14). We note that the model
possesses an intrinsic temperature scale

TSG =
~vξ2n

4π
(17)

defining a crossover from the high-temperature regime
with thermally-disordered spins to the “spin glass”
regime with spin correlations spanning the sample.

At T � TSG the model can be investigated by means of
the virial expansion. We assume that the coupling con-
stants ξi have a Gaussian distribution with the average
ξ and introduce the normalized cumulants gm such that

Gm =

(
ξ2e2

h

)m
[gm(τ,N)− δm,1N ] . (18)

The normalized cumulants are functions of the dimen-
sionless temperature τ = T/TSG and the number of im-
purities N = nL. At T � TSG the spin-spin correlation
function in Eq. (15) is given by

〈ŝiŝj〉 = tanh

(
~vξiξj cos 2kF (xi − xj)

4π|xi − xj |T

)
. (19)



4

0 1 2 3 4 5
0.0

0.5

1.0

FIG. 2: Spin-spin correlation function at the opposite ends of
the sample as a function of temperature for various systems
sizes. Note that larger system sizes result in stronger cor-
relations at given temperature. This effect is caused by the
long-rangedness of the RKKY exchange resulting in the loga-
rithmic renormalization of the spin-spin interaction constant
with increasing system size.

Substituting Eq. (19) in Eq. (15) and averaging over the
uniform distribution of magnetic impurities we find[10]

g1(τ,N) = −N
τ

ln (τN) . (20)

The logarithm in Eq. (20) is due to the 1/|xi−xj | depen-
dence in the large-distance expansion of Eq. (19). The
upper cutoff for this dependence is provided by the sys-
tem size, N/n, while the lower cutoff is defined by the
distance x at which the exchange energy ~vξ2/x equals
the temperature. For the higher cumulants the virial ex-
pansion yields [10]

gm(τ,N) = Cm
N

τ
, m > 1. (21)

Here Cm are constants, in particular C2 = 0.812 and
C3 = 0.0994. At NTSG � T � TSG the higher cumu-
lants satisfy g2

m � gm2 therefore the distribution of con-
ductance fluctuations is close to Gaussian.

With decreasing temperature virial corrections to the
spin-spin correlation function 〈ŝiŝj〉 become increasingly
important. To explore this effect we calculate [10] the
first two terms in the virial expansion of the correlator

〈ŝiŝj〉2 =
1

2τ2n2|xi − xj |2

(
1 +

2

τ
ln τn|xi − xj |+ . . .

)
,

(22)
where . . . stand for the higher-order terms in 1/τ. One
can see that no matter how large the temperature τ is,
the virial expansion breaks down at sufficiently large dis-
tances. For a given system size L one can define the
crossover temperature τ∗ such that 1 = τ−1

∗ ln(nLτ∗).
Below this temperature equations (20) and (21) are not
valid. The temperature τ∗ is a monotonically increasing
function of the system size. In large systems there exists
a parametric window 1 < τ < τ∗ where the long-range

spin-glass correlations are absent, yet the virial expansion
is invalid.

In order to investigate gm(τ,N) at τ < τ∗ we per-
formed Monte Carlo simulations for N = 25, 50, 100 and
200. For each N we consider 10 random realizations of
quenched impurity positions, assuming ξ to be the same
for all impurities. We observe a considerable slowdown
of the convergence of Metropolis algorithm for T < 5TSG

caused by the onset of spin glass correlations. To over-
come this difficulty we employ parallel tempering, which
works efficiently down to T = 0.5TSG. Numerical results
for g1,2(τ,N) are presented in Fig. 1. In the temperature
window 5 . τ . 10 the cumulants experience a sharp
increase from gm ∼ N (see Eq. (21)) to gm ∼ Nm+1 (see
Fig. 1 (c) ) with decreasing temperature. At τ . 5 corre-
lations between moments located near the opposite ends
of the edge set in, Fig. 2. Note that at all temperatures
the magnitude of the skewness of the conductance distri-
bution is less than the universal value 2

√
2 predicted by

the Rayleigh distribution. Moreover, at both high and
low temperatures away from the “spin glass” transition
the skewness is suppressed indicating a symmetric distri-
bution of conductance, quite unlike the quenched case.

Making material-specific estimates, we consider a
CdTe/HgTe quantum well doped with Mn. We assume
values d ∼ 7nm, EG ∼ 10meV, and v ∼ 5 · 107cm/sec
for the thickness, energy gap, and edge state veloc-
ity, respectively. These values are typical for a quan-
tum well in a topologically non-trivial state [13]. We
estimate the characteristic depth of the edge state as
` ∼ ~v/EG ≈ 10nm. The typical value of the exchange
constant per volume of the elementary cell a3

0 in bulk
Cd1−xMnxTe or Hg1−xMnxTe is [14] J/a3

0 ∼ 0.5eV, and
the lattice constant in these materials is a0 ≈ 0.65nm.
With the above parameters, we find for the dimensionless
exchange constant in Eq. (1) |κiab| ∼ J/(~v`d) ∼ 3 ·10−2.
For such |κiab| the Born approximation is valid ifN . 103.
The magnetic anisotropy for Mn ions, S = 5/2, in ma-
terials with zinc blende structure is sensitive to defor-
mation and possibly to the non-magnetic doping level,
making an estimate of K difficult. The existing ex-
periments and band structure calculations point to an
easy-axis anisotropy [15] with characteristic [16] values
K ∼ 0.1K. (We expect magnetic ions with non-zero
orbital angular momenta, such as Co, to have larger
values of K.) Replacing for estimates |ξ| with |κ| in
Eq. (17) and expressing n there in terms of the bulk
doping level, n = (`d/a3

0)x, we may re-write Eq. (17) as
TSG ∼ κ2~v(`d/4πa3

0)x ≈ 20x[K]. That yields a reachable
value of the characteristic temperature TSG ≈ 100mK at
a fairly low [17] magnetic doping level x = 0.005, while
the assumption δK . K is marginally satisfied.

To conclude, the purpose of this work is to reconcile
the possibility of mesoscopic fluctuations of the conduc-
tance of a helical edge with the exclusion of coherent
backscattering by time-reversal symmetry. We find that
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scattering off an ensemble of large-spin (S > 1) magnetic
impurities may open a temperature window in which the
conductance fluctuations are appreciable. The existence
of such window is provided by a relatively strong effect
of single-ion anisotropy which prevents easy flips of the
impurity spins. It is further enhanced by the RKKY
interaction between the spins. The latter interaction de-
pends on the Fermi momentum of helical edge, bringing
ergodicity in the conductance fluctuations as a function
of the helical edge chemical potential. We elucidated the
signatures of the described mechanism in the distribution
function of conductance fluctuations.
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