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The composite fermion formalism elegantly describes some of the most fascinating behaviours of
interacting two-dimensional carriers at low temperatures and in strong perpendicular magnetic fields.
In this framework, carriers minimize their energy by attaching two flux quanta and forming new
quasi-particles, the so-called composite fermions. Thanks to the flux attachment, when a Landau
level is half-filled, the composite fermions feel a vanishing effective magnetic field and possess a Fermi
surface with a well-defined Fermi contour. Our measurements in a high-quality two-dimensional hole
system confined to a GaAs quantum well demonstrate that a parallel magnetic field can significantly
distort the hole-flux composite fermion Fermi contour.

High-quality two-dimensional (2D) carrier systems of-
fer rich opportunities for exploring new physical phenom-
ena. At very low temperatures and in the presence of a
strong perpendicular magnetic field (B⊥), the electron-
electron interaction in these systems leads to a variety
of remarkable many-body phases, examples of which in-
clude the fractional quantum Hall effect (FQHE) state,
the Wigner crystal, and the non-uniform density phases
such as stripe and bubble phases [1–3]. The FQHE can be
successfully described through the concept of composite
fermions (CFs), quasi-particles formed by the attachment
of two (or in general an even number of) flux quanta to
each carrier in high B⊥ [3–9]. At the applied magnetic
field B⊥,1/2 where the lowest Landau level is exactly half-
filled (ν = 1/2), the flux attachment completely cancels
this external field, leaving the CFs as if they are at zero
effective magnetic field. The effective field the CFs feel
away from ν = 1/2 is given by B∗⊥ = B⊥−B⊥,1/2 [10]. At
and near ν = 1/2, analogously to the low-field carriers,
the CFs occupy a Fermi sea with a well-defined Fermi
contour.

The existence of a CF Fermi contour raises the ques-
tion whether any low-field Fermi contour anisotropy is
transmitted to the high-field CFs after fermionization
[11, 12]. This issue was partially addressed in a recent
experimental study of 2D electrons confined to an AlAs
quantum well where they have an anisotropic (elliptical)
Fermi contour [12]. The study revealed that, qualita-
tively similar to their B⊥ = 0 electron counterparts, CFs
also exhibit a transport anisotropy. Namely, the resis-
tance at ν = 1/2 is larger along the long axis of the
B⊥ = 0 electron Fermi contour (where the effective mass
is large) compared to the resistance along the short axis
(where the effective mass is smaller). While this ob-
servation suggests that the CFs might also possess an
anisotropic Fermi contour, it does not provide conclu-
sive or quantitative evidence for such anisotropy. An
anisotropy in the CF scattering time, for example, would
also lead to anisotropic transport. More generally, the
problem of anisotropy in FQHE phenomena has sparked
recent interest both experimentally and theoretically [13–
17]. Here we report direct measurements evincing that

the CF Fermi contour can be anisotropic. Moreover, we
demonstrate that the anisotropy is tunable via the ap-
plication of a strong magnetic field parallel to the 2D
plane.

Figure 1 highlights the main ingredients of our study.
Imagine an isotropic 2D system in which the charged par-
ticles have a circular Fermi contour (in reciprocal space)
with Fermi wave vector kF (Fig. 1(b)). In a small, purely
perpendicular, magnetic field the particles’ classical cy-
clotron orbit is also circular and is completely character-
ized by the cyclotron radius RC (Fig. 1(a)). Now, if the
particles have a finite (non-zero) layer thickness, a par-
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FIG. 1. (color online) (a) and (b) The cyclotron orbit and
the Fermi contour are shown, respectively, for an isotropic
2D system when B|| = 0. (c), (d) If the 2D system has a
finite (non-zero) thickness, applying B|| > 0 distorts the cy-
clotron orbit and the Fermi contour. (e) The sample has two
Hall bars along the perpendicular directions [110] and [110],
and B|| is introduced along the [110] direction by tilting the
sample with respect to the the magnetic field direction. The
electron-beam resist grating covering the top surface of each
Hall bar is shown as blue stripes. The orientations of the Hall
bars and the resist gratings are chosen to probe the Fermi
contours in the [110] and [110] directions. The cyclotron or-
bits, given with brown lines, are shown for the case when the
orbit diameter fits the grating period a in the [110] direction
but is larger than a in the [110] direction. Inset: Scanning
electron microscope image of the electron-beam resist grating
with an a = 200 nm period.
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allel magnetic field (B||) applied in the 2D plane couples
to their out-of-plane orbital motion and leads to a defor-
mation of the cyclotron orbit, shrinking its diameter in
the in-plane direction perpendicular to B|| (Fig. 1(c)).
Equivalently, the particles’ Fermi contour becomes elon-
gated in the direction perpendicular to B|| (Fig. 1(d)).

The Fermi contour and/or the cyclotron orbit defor-
mation can be directly probed in a sample with a small,
periodic, one-dimensional, density modulation where the
carriers complete ballistic cyclotron orbits: whenever
the orbit diameter becomes commensurate with the pe-
riod of the density modulation, the sample’s magneto-
resistance exhibits a resistance minimum. In particular,
the anisotropy of the cyclotron orbit or the Fermi con-
tour can be determined via measuring the positions of
the commensurability magneto-resistance minima along
the two perpendicular arms of an L-shaped Hall bar as
shown in Fig. 1(e). In a recent study, using the technique
described in Fig. 1, we indeed measured the Fermi con-
tour anisotropy of 2D hole systems confined to a GaAs
quantum well and found that the contour is severely dis-
torted when the 2D holes are subjected to a strong B|| of
the order of 10 T [18]. In the work described here, we use
similar samples and techniques to demonstrate that the
Fermi contour of the hole-flux CFs is also distorted when
a strong B|| is applied, although the degree of anisotropy
is much smaller.

We studied strain-induced superlattice samples with
lattice periods of a = 175 and 200 nm from a 2D hole sys-
tem confined to a 175-Åwide GaAs quantum well grown
via molecular beam epitaxy on a (001) GaAs substrate.
The quantum well, located 131 nm under the surface,
is flanked on each side by 95-nm-thick Al0.24Ga0.76As
spacer layers and C δ-doped layers. The 2D hole density
at T ' 0.3 K is p ' 1.5 × 1011 cm−2, and the mobility
is µ = 1.2× 106 cm2/Vs. As schematically illustrated in
Fig. 1(e), the sample has two Hall bars, oriented along
the [110] and [110] directions. The Hall bars are covered
with periodic gratings of negative electron-beam resist.
Through the piezoelectric effect in GaAs, the resist pat-
tern induces a periodic density modulation [18–24]. We
passed current along the two Hall bar arms and measured
the longitudinal resistances along the arms in tilted mag-
netic fields, with θ denoting the angle between the field
direction and the normal to the 2D plane; see Fig. 1(e).
The sample was tilted around the [110] direction so that
B|| was always along [110]. We performed the experi-
ments using low-frequency lock-in techniques in two 3He
refrigerators with base temperatures of T ' 0.3 K, one
with an 18 T superconducting magnet and the other with
a 31 T resistive magnet.

The high-field data (Fig. 2), taken at θ = 0◦ (B|| = 0),
for the two Hall bars of the a = 200 nm sample exhibit
prominent commensurability features around ν = 1/2:
a characteristic, V-shaped, resistance dip centered at
ν = 1/2 and two strong resistance minima, marked by
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FIG. 2. (color online) Magnetoresistance traces from the [110]
and [110] Hall bars of a sample with a = 200 nm are shown
in black and red, respectively. The two prominent resistance
minima visible near ν = 1/2, marked by arrows, signal the
commensurability of the CF cyclotron orbit diameter with
the period of the density modulation (see text).

arrows on each side of ν = 1/2, followed by flanks of
rapidly rising resistance [24–31]. Of particular interest
to us are the two minima as they correspond to the com-
mensurability of the CF cyclotron orbit diameter (2R∗C)
with the period a of the potential modulation. Quanti-
tatively, for a circular CF Fermi contour, the positions of
these resistance minima are given by the magnetic com-
mensurability condition [24–32]:

2R∗C
a

=
5

4
, (1)

where R∗C = ~k∗F /eB∗⊥ is the CF cyclotron radius at B∗⊥,
k∗F =

√
4πp is the CF Fermi wave vector, and p is the 2D

hole density [10]; note that the expression for k∗F takes
into account complete spin polarization at high fields and
is larger that its low-field hole counterpart by a factor of√

2. In a recent study, it was demonstrated that Eq. (1)
indeed describes the positions of resistance minima ex-
hibited by hole-flux CFs in our samples in the absence
of B|| [24]; this is seen in Fig. 2 where the arrows point
to the positions of the minima expected from Eq. (1). In
the present study, we monitor the shift in the observed
positions of these minima as a function of applied B|| to
directly probe the size and shape of the CF Fermi con-
tour.

As illustrated in Fig. 3, the application of B|| has a
profound effect on the appearance of the commensura-
bility minima near ν = 1/2. Data for the two Hall bars
along the [110] and [110] directions are shown side-by-side
in Figs. 3(a) and (b). In both panels, the vertical green
dashed lines mark the expected positions of the CF com-
mensurability resistance minima based on Eq. (1). These
dashed lines match very well the observed positions of the
resistance minima for the bottom traces of Fig. 3 which



3

a = 175 nm
p = 1.50 x 1011 cm-2

B┴ (T)
R [

11
0]

a = 200 nm
p = 1.52 x 1011 cm-2

12 13

1 kΩ

θ = 64°

0°

58°

50°

39°

23°
25°

41°

52°

59°

(b)

1 kΩ

12 13

R [
11

0]

62°

B┴ (T)

1/2 1/2

0°

I, B||
B||

[110]

[1
10

] I

*

B┴ (T)

0 1-1 0 1-1

(a)

B┴ (T)*

FIG. 3. (color online) (a) Summary of the evolution of the
magnetoresistance in the vicinity of ν = 1/2 of the a = 175
nm sample measured along the [110] Hall bar. The tilt angle
θ is given for each trace. The vertical green dashed lines mark
the expected positions of the primary CF commensurability
resistance minima if the CF cyclotron orbit were circular. (b)
Magnetoresistance data for the a = 200 nm sample measured
along the [110] Hall bar. In both (a) and (b), the scale for
the applied external field B⊥ is shown on top while the scale
for the effective magnetic field B∗⊥ = B⊥ −B⊥,1/2 felt by the
CFs is given at the bottom (B⊥,1/2 is the external field at
ν = 1/2).

were taken at θ = 0 (B|| = 0) [33]. With increasing θ and
B||, for the [110] Hall bar (Fig. 3(a)), the positions of the
two resistance minima shift away from the dashed lines
to higher values of |B∗⊥|. As evidenced by the top trace
in Fig. 3(a), their shift reaches ' 0.25 T at the high-
est θ (= 64o). In contrast, the positions of the resistance
minima for the Hall bar in the perpendicular, [110] direc-
tion (Fig. 3(b)) move towards lower |B∗⊥|, and the shift
is smaller. In particular, when θ = 62o, the minima of
the top trace have moved toward B∗⊥ = 0 only by ' 0.10
T.

The positions of the resistance minima along the [110]
and [110] directions can be used to directly extract the
magnitude of the CF Fermi wave vectors along [110]
and [110] and [110] respectively. According to Eq. (1),
k∗F = (5/8)(eaB∗⊥/~), where B∗⊥ indicates the effective
CF magnetic field at which the resistance minimum is
observed. Note that the commensurability condition

along a given modulation direction gives the size of k∗F
in the direction perpendicular to the modulation direc-
tion [18, 19, 34]. Using the above relation, we converted
the B∗⊥ positions of the resistivity minima seen in Fig. 3
to the size of the CF k∗F along the [110] and [110] di-
rections and summarize the results in Figs. 4(a) and (b).
The horizontal, green dashed lines in these figures indi-
cate the expected k∗F , if a circular CF Fermi contour is
assumed. For data taken at B|| = 0, the values of k∗F
are mostly in good agreement with those expected for
CFs with circular Fermi contour [33]. With increasing
B||, however, it is clear in Figs. 4(a) and (b) that the CF
Fermi wave vector along [110] increases (by as much as
30% at the highest B||), while along [110] it decreases
(by nearly 15%). These data therefore provide unam-
biguous and quantitative evidence for a deformation of
the CF Fermi contour in the presence of an applied B||.
Moreover, by tilting the sample, the CF anisotropy can
be controllably tuned.

We combine the data of Figs. 4(a) and (b) to deduce
the relative distortion of the CF Fermi contour, as shown
in Fig. 4(c). Here we plot the ratio of k∗F along the [110]
and [110] directions, as deduced from the B∗⊥ > 0 dada.
Before performing the division, we fitted each set of data
points from Fig. 4(a) and (b) with simple, second-order
polynomials. The ratio of the two k∗F values in the two
directions is as high as 50% at B|| = 25 T, indicating a
severe distortion as a result of B||. One obvious question
that arises is whether the CF Fermi contour is elliptical
or has a more complicated (warped) shape, e.g., simi-
lar to those we recently measured for 2D holes near zero
magnetic field [18]. Since in our experiments we mea-
sure CF k∗F only along two specific (and perpendicular)
directions, we cannot rule out a complicated shape. How-
ever, our data are consistent with a nearly elliptical CF
Fermi contour. This is evinced from the plot of Fig. 4(d)
where we plot the ratio of the geometric mean of the two
k∗F ’s we measure along [110] and [110] to the Fermi wave
vector expected for a circular CF Fermi contour, i.e., to
k∗F =

√
4πp. The fact that this ratio is close to unity im-

plies that the area enclosed by an elliptical Femri contour
whose major and minor Fermi wave vectors are equal to
the two values we measure has the correct magnitude,
i.e., it accounts for all the CFs. We show such an ellipse
in Fig. 4(c) inset (solid black curve)

The CF commensurability data described here provide
the first direct evidence that the CF Fermi contour can
be anisotropic. Moreover, they demonstrate how this
anisotropy can be tuned via the application of a strong
B||. The origin of this anisotropy is very likely the cou-
pling between B|| and the out-of-plane motion of the
CFs, which have non-zero thickness. Such coupling is
known to severely distort the Fermi contour of low-field
carriers (Fig. 1). Indeed, for the low-field 2D holes in
our samples, we recently measured a very elongated (and
non-elliptical) Fermi contour with an anisotropy ratio of
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FIG. 4. (color online) (a), (b) Measured values of the CF Fermi wave vectors k∗F along the [110] and [110] directions, respectively.
Data shown with open squares were measured in a superconducting magnet with maximum field of 18 T. The closed symbols
are data taken in a 31 T resistive magnet system. Horizontal green dashed lines represent the Fermi wave vector k∗F =

√
4πp,

expected for a circular CF Fermi contour (see Eq. (1)). The 2D hole density is p ' 1.5× 1011 cm−2. (c) Relative anisotropy of
the CF Fermi contour deduced from dividing the (interpolated) measured values of k∗F along [110] by those along [110]; data
for B∗⊥ > 0 were used. The inset schematically shows the CF Fermi contour at B|| = 0 (dashed, green circle) and at B|| = 25
T (solid, black curve); the latter is based on the assumption that the CF is elliptical. (d) The geometric mean of the measured
k∗F along [110] and [110], divided by k∗F expected for a circular CF Fermi contour.

about 3 (at B|| = 15 T), and found the data to be in
good agreement with the results of band calculations [18].
The anisotropy ratio we measure for the CF Fermi con-
tour at a comparable B|| is much smaller, only about 1.2
(Fig. 4(c)). Absent, however, are theoretical calculations
that would treat the anisotropy of CF Fermi contours in
the presence of B|| in general, and in particular explain
the anisotropy we measure in our experiments. The much
different anisotropy that we observe for the hole-flux CF
Fermi contour compared to the 2D holes indeed appears
to contradict the conclusions of the only available theo-
retical work which predicts that the CF Fermi contour
shape should be identical to that of the zero-field par-
ticles [11]. We note that, besides its thickness, other
parameters of the quasi-2D carrier system, such as the
band structure and effective mass as well as the charac-
ter of the Landau level where the CFs are formed, are
also likely to play an important role in determining the
anisotropy of the CF Fermi contour in a strong B||. Our

conjecture is based on our preliminary data for a 300-Å-
wide GaAs quantum well containing electrons: despite its
larger thickness, this sample exhibits a CF Fermi contour
anisotropy which is much smaller than the anisotropy we
observe in our 175-Åwide GaAs hole quantum well sam-
ple.

While a quantitative explanation of our experimental
data awaits future theoretical work, we emphasize that
our results clearly establish the presence of CF Fermi

contour anisotropy. This has important implications and
raises several interesting questions. For example, what
is the role of anisotropic interaction in general? How
does the anisotropy affect the ground states and the ex-
citations of the 2D carrier system at high perpendicular
fields? Does the anisotropy affect, e.g., the energy gaps
of the fractional quantum Hall states? Our results pro-
vide stimulus for future studies to answer some of these
questions.
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