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Motivated by the recent indications of ferromagnetism in transition metal oxide heterostructures,
we propose a possible mechanism to generate ferromagnetism for itinerant t2g systems in two spatial
dimensions that does not rely on the coupling between local moments and conduction electrons. We
particularly emphasize the orbital nature of different bands and show that, when the Fermi level
lies near the bottom of the upper bands, a non-perturbative interaction effect due to the quasi-one-
dimensional nature of the upper bands may drive a transition to a state in which the upper bands
are ferromagnetically polarized. In the quasi-one-dimensional limit, the full thermodynamics may
be obtained exactly. We discuss the connection between our mechanism with several itinerant t2g
systems that may have ferromagnetic instabilities.
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Possible ferromagnetism at polar interfaces between
SrTiO3 (STO) and other oxides such as LaAlO3 (LAO)
or GdTiO3 (GTO)[1–6] has raised considerable excite-
ment. Such ferromagnetism is remarkable as the elec-
trons are believed to reside nearly completely in the t2g

bands of the STO, where there are no localized partially
filled shells to form local moments. Ferromagnetism in
purely itinerant systems, while envisioned long ago[7],
is quite rare in practice; most examples may be at least
partially attributed to local moments formed by partially
filled d-shells (and often other delocalized electrons).

In this paper, we discuss the possibility of ferromag-
netism in t2g systems of this type. In a typical metallic
state, ferromagnetism is unfavorable because of the ki-
netic energy cost. This is believed to be overcome at
very low density, where the dimensionless inter-electron
distance rs & 30[8, 9]), and also very close to the Mott
metal-insulator transition, when the electron filling is
close to an integer. In the former regime, ferromagnetism
and indeed metallicity as well are extremely fragile to dis-
order, and may be disregarded in almost all practical sit-
uations. The latter situation might be thought to apply
to the aforementioned LAO/STO and GTO/STO inter-
faces, in which there is an intrinsic mechanism for high
carrier density: the polar discontinuity[10]. LAO and
GTO have a structure of polar (001) layers: La3+O2− has
a net charge of +1 per unit cell, while Al3+(O2−)2 has a
net charge of −1 per unit cell (the same counting holds
for GTO). STO by contrast is non-polar. At an ideal
(i.e. without atomic reconstruction or compensating de-
fects) interface between two such materials, an electron
gas is predicted to arise with a carrier density of half an
electron per two-dimensional unit cell. This translates,
using the unit cell of STO, into a two-dimensional carrier
density of n = 3.5× 1014cm−2, which is extremely large
by semiconductor standards. However, this still corre-
sponds to a fractional Ti site occupation x < 0.5, and
probably more properly x < 0.2, taking into account the

spread of the electrons normal to the interface.[11–14]
Modern computational studies have put strong restric-
tions on ferromagnetism due to Mott physics in Hubbard
models[15], the most recent studies arguing it is absent
in the two-dimensional Hubbard model for fractional site
occupation x . 0.7, even when the on-site Hubbard in-
teraction U → ∞[16, 17]. STO 2DEGs are well below
this degree of site occupation, so Mott physics cannot be
invoked to explain ferromagnetism.
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FIG. 1. Phase boundary in the 1d limit, t′ = 0. Here x1

is the occupation per site of the xz or yz orbitals, JH is the
renormalized Hund’s coupling (see text), W is an energy scale
of order the hopping, and it is assumed that x1, JH/W �
1. Solid and dashed lines denote continuous and first order
transitions, respectively.

Instead, we propose here that an unusual enhanced
tendency to ferromagnetism may occur due to the quasi-
one-dimensionality of certain bands in these materials,
which in turn arises due to the directionality of the t2g
orbitals involved. The enhanced tendency to magnetism
is a non-perturbative effect of the Hubbard U interaction,
which leads to strong scattering in one dimensional sub-
bands with low filling. The non-perturbative effects can
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be controlled by virtue of exact results and bosonization
methods which are particular to one dimensional prob-
lems. Due to the non-perturbative effect, ferromagnetism
is induced by even very weak atomic Hund’s exchange
on the Ti atom (see below). We argue that the ferro-
magnetism survives in sufficiently anisotropic two dimen-
sional systems. It occurs only for low filling of the xz/yz
subbands, where the majority of the polarization resides.
The central result of our calculations is summarized by
the phase diagram in Fig. 1.

For our discussion, we will require a few particulars
of the conduction band states in STO, which are well-
established. The low lying octahedral t2g crystal field
levels of Ti comprise yz, xz, and xy orbitals. Ow-
ing to its directionality, hopping t in the plane of a
given orbital is much larger than the hopping t′ normal
to the plane (values in the literature are in the range
0.03 < t′/t < 0.15[11]). Thus in a bulk system with cubic
symmetry, there are three bands each of which disperses
predominantly in 2 of the 3 cartesian directions. When
confinement is introduced in the z direction for a (001)
interface, an xy subband is lowest energy and disperses
fairly uniformly in the two dimensional plane, while xz
and yz subbands are higher in energy and approximately
one-dimensional.

The reduction of the kinetic energy of the xz and
yz subbands suggests we consider them for possible fer-
romagnetic polarization. We therefore adopt a mini-
mal model with three two-dimensional sub-bands for the
(001) interface, with the Hamiltonian H = H0 + HI ,
where the kinetic energy is

H0 =
∑

k,α

k2
x + k2

y

2m0
d†0α(k)d0α(k)

+
∑

k,α,i=x,y

(
∆ +

k2
i

2mi

)
d†iα(k)diα(k). (1)

Here d0α, dxα, dyα describe the xy, xz, and yz bands
(with spin polarization α =↑, ↓), respectively, mi is an
effective mass, and ∆ is the subband crystal field split-
ting. We have assumed a tetragonal crystal field symme-
try for the (001) interface in Eq. (1), so mx = my. Since
we always consider the band bottom, this is equivalent
to taking a tight binding model with hopping amplitude
ti = 1/(2mia

2), where a is the lattice spacing. Here we
make an approximation t0 ≈ tx = ty ≡ t so that all the
effective masses are equal. We take on-site interactions,
of the form

HI = U
∑

r,i

ni↑(r)ni↓(r) + U ′
∑

r,i6=j

ni(r)nj(r)

−JH
∑

r,i6=j

Si(r) · Sj(r), (2)

where niα(r) = d†iα(r)diα(r), ni(r) =
∑
α niα(r), and

Si(r) = 1
2

∑
αβ d

†
iα(r)σαβdiβ(r). As usual, we expect the

intra-orbital interaction Hubbard U to be the largest in-
teraction, with the inter-orbital interaction U ′ and the
Hund’s coupling JH rather smaller, U ′/U, JH/U . 0.3.
Other interactions are typically at least an order of
magnitude smaller in 3d transition metal compounds,
and interactions between different Ti sites are strongly
screened. To proceed, we first project HI onto the 2d
subbands, which replaces the couplings by renormalized
reduced ones, U → U/z, U ′ → U ′/z, JH → JH/z where
z is roughly the number of STO unit cells over which the
subbands are spread (strictly speaking these factors de-
pend on the bands involved, but below interactions play
a key role only for the xz/yz subbands – for which z ≥ 4
obtains based on subband modeling). We henceforth ab-
sorb this renormalization into the couplings.

To analyze the effect of interactions, we now treat the
U ′ and JH as small (which they are, relative to U), and
consider possible ferromagnetic instabilities they induce.
With U ′ = JH = 0, the Hamiltonian is decoupled to
three single-band problems, and hence does not support
ferromagnetism. However, crucially, the xz and yz sub-
systems become extremely susceptible to ferromagnetism
when they contain a low density of electrons. What we
require is the free energy of each orbital subsystem as
a function of its magnetization, including the effects of
strong on-site U . For the xy subband, which is two-
dimensional, an on-site interaction U has little effect,
and in the low density (per lattice site) limit studied
here the interactions can be exactly treated by a stan-
dard T-matrix ladder summation. The result is sim-
ply a Fermi liquid with small Landau parameters, which
can be neglected at the level of the present considera-
tion. A posteriori, it is justified to assume the magne-
tization M0 of the xy subband is small, so that we can
just approximate its free energy by the quadratic form
M2

0 /(2χ2d), where χ2d is the susceptibility for such a 2d
system. Neglecting the Fermi liquid correction, this is
χ2d = ma2/(2π) = 1/(4πt).

For the xz and yz subbands, however, due to their
one-dimensionality, the situation is radically different.
Remarkably, it is known that the susceptibility, χ1d, of
a 1d electron gas (1DEG) is highly divergent at low
density.[18, 19] In particular, it actually diverges as χ1d ∼
1/(Wx2

1), where W is an energy scale and x1 is the occu-
pation per site, for any non-zero U . This is a strong inter-
action effect: the ratio of the interacting to free fermion
susceptibility χ1d/χff →∞ diverges for x1 → 0.

We can explain the enhanced susceptibility, and even
obtain a general result for the free energy versus magne-
tization, starting from the fact that low energy scatter-
ing is enhanced in one dimension. In particular, for an
arbitrary repulsive interaction, the reflection probability
for a pair of scattering particles approaches unity when
their energy approaches its minimum – this is true only
in one dimension. Consequently, the electrons in a low
density 1DEG are almost unable to exchange, and the
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energy of the ground state becomes almost independent
of spin, and equal to that of spinless fermions. In fact,
there is a parametrically weak residual exchange cou-
pling, which occurs due to the small transmission prob-
ability of colliding electrons. Because the charge degrees
of freedom are well-ordered on this exchange scale, the
spin dependence of the ground state energy is exactly that
of a one-dimensional Heisenberg antiferromagnetic chain
with an effective exchange interaction Jeff much smaller
than the 1d Fermi energy εF , and one “site” per electron
in the 1DEG. We expect Jeff/εF to vanish as x1 → 0,
and since εF ∼ tx2

1, we guess Jeff ∼ Wx3
1. We have

checked that this agrees with all known exact results for
the susceptibility of the 1d Hubbard model[18, 19]. In
the large U limit, we obtain W ∼ 2π2t2/(3U), while for
small U , W ∼ U . Using the former estimate, we obtain
W ≈ (1− 2)t for the titanates.

Consequently we can obtain the free energy for an ar-
bitrary magnetization of the 1d xz and yz subbands. If
the spin (per site) in the xy band is M0 and that in the
xz and yz bands is M1, it is (per site)

F =
M2

0

2χ2d
+ 2x1JeffF1

[
M1

x1
,
kBT

Jeff

]
− JH(2M0M1 +M2

1 ),

(3)
where F1[m, t] is the free energy per site of the 1d anti-
ferromagnet chain unit exchange with magnetization m
and temperature t. This assumes x1 � 1. The first
two terms represent the exact thermodynamics for the
decoupled orbital subsystems, and fully incorporate all
the effects of U . The last term is simply the leading
first order term in the expansion of the energy of these
states in JH , presumed small. Eq. (3) may also be inter-
preted in terms of a mean-field treatment of the Hund’s
coupling only. This is quite analogous to “chain mean
field theory”, which has been successfully applied to ex-
plain numerous experiments in low dimensional magnetic
materials,[20] and is known to be usually quantitatively
rather accurate.

Using Jeff = Wx3
1 and M1 ≤ x1/2, we see from Eq. (3)

that when x1 .
√
JH/W , the Hund’s energy overwhelms

the 1d exchange and favors a ferromagnetic state with
M1 6= 0. Remarkably, this occurs for arbitrarily weak
Hund’s coupling JH , provided the filling of the upper
xz and yz subbands is sufficiently small, and of course
non-zero. This gives a mechanism for ferromagnetism
at intermediate carrier density, when the total density
is near the critical value needed to just populate the xz
and yz subbands, with magnetism disappearing both for
smaller and larger carrier density. A quantitative min-
imization of Eq. (3) is possible since F1[m, t] is known
exactly from the thermodynamic Bethe ansatz[21]. As-
suming JH � t,W and x1 � 1, we obtain a dome-shaped
region of ferromagnetism, as shown in Fig. 1. Note that
the characteristic maximum temperature scale is of order
of kBTc ∼ 0.05

√
J3
H/W . From this minimization we can

also obtain the magnetization at all temperatures and
fields. In particular we find that at T = 0 the xz/yz
bands are fully polarized.

It may appear that the one dimensional physics of
the above picture is overly exotic and restrictive. How-
ever, this is not the case, and can persist up to some
reasonable value of t′. This hopping causes a crossover
from 1d behavior to 2d Fermi liquid behavior at low en-
ergy. By continuity, for small t′/t, this Fermi liquid must
have an enhanced spin susceptibility captured by a large
Fermi liquid correction F a0 . However, the eventual two-
dimensionality induced by non-zero t′ controls the maxi-
mum susceptibility achieved at small x1, and if this effect
is too large, the ferromagnetic instability may be entirely
removed. The susceptibility divergence is cut off when
the distance between the Fermi energy and the bottom
of the xz and yz bands is comparable to the hopping t′,
i.e. tx2

1 ∼ t′. The same condition describes the change
from an open Fermi surface to an elliptical one. This
gives the condition t′ . JHt/W for the ferromagnetic
phase to occur (we neglect numerical prefactors here due
to the imprecision of the matching argument). Of course,
when t′ is substantial, the magnitude of the magnetiza-
tion and of Tc will be reduced from the 1d values given
in Fig. 1, further increasing the tendency to low Tc and
small net moment.

Interfaces Symmetry Local orbitals

(001) 4-fold rotation xz, yz; xy

(110) 2-fold rotation 1√
2
(xz + yz); xy; 1√

2
(xz − yz)

1√
3
(xy + ei

2π
3 yz + e−i 2π

3 xz),

(111) 3-fold rotation 1√
3
(xy + e−i 2π

3 yz + ei
2π
3 xz);

1√
3
(xy + yz + xz)

TABLE I. The relevant local crystal symmetries and local
orbital states for different interfaces. ‘;’ delimits the sets of
locally degenerate orbital states. Note that there could be a
small hybridization between 1√

2
(xz + yz) and xy orbitals for

the (110) interface.

Recently the (110) and (111) LAO-STO interfaces have
also been prepared experimentally[22, 23], and both in-
terfaces appear to support STO electron gases, though
the (111) interface is polar and the (110) is not. As
listed in Tab. I, these two interfaces have different lo-
cal crystal field environments and hence different local
orbital configuration from the (001) interface. Can these
two interfaces also support ferromagnetism – under ideal
disorder-free conditions – at certain electron fillings?

As usual, the eg doublets are always higher in en-
ergy and do not play any role. For the (110) inter-
face, the three t2g orbitals are splitted into three non-
degenerate orbitals, 1√

2
(xz + yz), 1√

2
(xz − yz) and xy.

In the first approximation, the local hybridization be-
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tween 1√
2
(xz + yz) and xy orbitals may be neglected.

When these two orbitals form bands, they are also quasi-
one-dimensional just like xz and yz orbitals for the (001)
interface. Hopping among 1√

2
(xz+yz) (/xy) orbitals oc-

curs most strongly with neighbors along z ( /[11̄0]) lattice
directions. The 1√

2
(xz− yz) subband is two dimensional

and its band bottom is the lowest among the three sub-
bands. Due to the reduced symmetry of the (110) inter-
face, the two upper quasi-one-dimensional subbands are
split. Based on our above discussion of ferromagnetic in-
stability for the (001) interface, we also expect emergent
ferromagnetism for the (110) interface when the filling of
the quasi-one-dimensional subband is sufficiently small.
Because the two upper quasi-one-dimensional subbands
are not degenerate, there may even exist two ferromag-
netic regime as the electron filling of the two upper sub-
band is increased. One should note that the discussion
here assumes no hybridization between 1√

2
(xz + yz) and

xy orbitals. In reality, there are always small hybridiza-
tion between these two orbitals. If this hybridization is
very small (smaller than O(

√
JH/J)), the resulting two-

dimensional Fermi liquid should still have a large spin
susceptibility and ferromagnetism can still be present.

For the (111) interface, although locally the crys-
tal field splits three t2g orbitals into one a1g state,
1√
3
(xy + yz + xz), and two e′2g states, 1√

3
(xy + ei

2π
3 yz +

e−i
2π
3 xz) and 1√

3
(xy + e−i

2π
3 yz + ei

2π
3 xz), the electron

hopping strongly hybridizes three orbitals and leads to
two-dimensional Fermi liquids. Hence no ferromagnetism
arises in this case.

In constrast to the itinerant mechanism discussed here,
other theoretical works have instead proposed mecha-
nisms relying on localized electron moments. While we
believe that Mott localization of electrons near the in-
terface should not occur for ideal structures, sufficient
disorder and interactions together might create some
truly localized moments. If the localized electron mech-
anisms are correct, we predict significant dependence of
the ferromagnetism on disorder, and indeed that it should
weaken as sample quality is improved. The itinerant
mechanism discussed here has its own distinct predic-
tions, e.g. Fig. 1, and the fact that the polarization
resides in xz/yz bands, which may be tested by x-ray
dichroism experiments. Further, varying the electron
concentration away from the critical density by tuning
the back gate voltage may easily suppress the ferromag-
netism, and ferromagnetism should be absent at the (111)
interface; neither prediction applies for the local moment
mechanism[24].
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