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Abstract 

The elementary excitations of vibration in solids are phonons.  But in liquids phonons are 

extremely short-lived and marginalized.  In this letter through classical and ab-initio molecular 

dynamics simulations of the liquid state of various metallic systems we show that different 

excitations, the local configurational excitations in the atomic connectivity network, are the 

elementary excitations in high temperature metallic liquids.  We also demonstrate that the 

competition between the configurational excitations and phonons determines the so-called 

crossover phenomenon in liquids.  These discoveries open the way to the explanation of various 

complex phenomena in liquids, such as fragility and the rapid increase in viscosity toward the 

glass transition, in terms of these excitations. 
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The physics of phonon in crystalline solids is well-understood [1].  For instance its 

frequency can be calculated by diagonalizing the dynamical (Hessian) matrix, the matrix of 

which elements are the second derivative of the total energy with respect to the atomic 

displacements [1].  In liquids, however, the dynamical matrix itself is time-dependent because 

the atomic structure is changing with time.  If the dynamical matrix varies as fast as, or faster 

than phonons [2] the validity of the concept of phonon becomes questionable.  Yet, it is known 

that at high temperatures the specific heat of a liquid approximately satisfies the Dulong-Petit 

law of CV = 3kB [3], suggesting the presence of some well-defined excitations.  But the nature of 

such excitations in liquids is unknown.  In general we know very little about the atomic 

dynamics in liquids.  Theoretically the flow of a liquid is commonly described by continuum 

hydrodynamic theories [4, 5].  Less attention has been paid to the atomic level dynamics because 

it has been believed that the liquids were so random that details of the atomic motion were 

irrelevant to the physics of liquid flow.  For instance the energy landscape theory describes 

atoms in a liquid at high temperatures as diffusing almost freely well above the peaks and valleys 

of energy landscape, seeing only shallow minima [6].  Actually at high temperatures above the 

so-called crossover temperature viscosity shows the Arrhenius behavior of thermal activation [7, 

8].  However the nature of such activation processes and the origin of the crossover behavior 

remain unclear.   

In this letter we show that elementary excitations different from phonons exist in liquids, 

and they are the origin of viscosity, and that the competition between the high temperature 

elementary excitations and phonons results in the crossover phenomenon in liquids.  This is done 

through classical as well as ab-initio molecular dynamics (MD) simulations on various metallic 
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liquids in either NVT or NPT ensembles. The periodic boundary condition on a cubic box was 

imposed for all systems. For liquid iron the model consisted of 16,384 atoms interacting via the 

modified Johnson potential [9]. The binary Kob-Andersen (KA) model [10] of 80/20 mixture 

(80% particle A and 20% particle B) consisted of 10,976 Lennard-Jones (LJ) particles at a 

reduced density of 1.2. All results for KA model are expressed in argon units. The simulations 

were performed in a temperature range from 60K to 300K, under NVT ensemble. For Cu56Zr44 

and Zr50Cu40Al10, we employed embedded atom method (EAM) potentials [11, 12] and 

simulated the systems with 16,000 atoms for Cu56Zr44 under NVT ensemble, and with 32,000 

atoms for Zr50Cu40Al10 under NPT ensemble with pressure equal to zero. The simulations were 

carried out using the LAMMPS software.  Ab initio MD simulations of Cu56Zr44 in the NVT 

ensemble were performed using dynamics based on forces from the Projector Augmented-Wave 

(PAW) method [13] (Gamma point only) as implemented in the VASP 4.6 code [14]. The 

simulation cell contained 200 atoms with periodic boundary conditions. The sample was 

equilibrated using a Nosé-Hoover thermostat [15, 16] at T = 4000, 4500 and 5000K for 3 ps 

followed by 1.1 ps of data collection during which the positions and stress matrix were recorded 

every time step (fs).  Further details of the methods are given in Supplemental Material. 

 The viscosity, η, is a key parameter describing the dynamics of liquids.  It is given by the 

Green-Kubo formula [17], 

 

 η 0∞        (1) 

 

where  is the x-y component of the stress tensor, T is the temperature and V is the volume of 

the liquid.  The time-scale of liquid dynamics is determined by the Maxwell relaxation time , 
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where  

 

∞ = 0   (3) 

 

is the high-frequency shear modulus [17].  If the time-scale of the experiment is shorter than  

the system behaves like a solid, whereas if it longer it behaves like a liquid.  It has been 

suggested that τM is related to the α-relaxation time, τα [18], and the bond-lifetime, τB [19].  The 

α-relaxation time is determined from the intermediate scattering function at the first peak of the 

structure function, S(Q) [17].  In the metallic systems under consideration here chemical bonds 

are not well-defined.  However, it is possible to define the atomic connectivity network by 

defining the “bond” between the nearest neighbor atoms.  This is because the nearest and the 

second nearest neighbors are well separated in the atomic pair-density function (PDF).  We 

define the distinction between the 1st and 2nd nearest neighbors by the minimum in the PDF 

between the 1st and 2nd peaks. 

 In Figure 1 we compare the temperature dependences of τM, τα, and τB for liquid Fe.  

Indeed three relaxation times show similar temperature dependences, but they are different in 

magnitude.  τα is longer than τM by a factor of about three, and τB is even longer, by an order of 

magnitude, than τα [19].  On the other hand the life-time of the state of local atomic connectivity, 

τLC, [20] is in much closer agreement with τM as shown also in Figure 1.  Here τLC is defined as 
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the time for an atom to lose or gain one nearest neighbor (Figure 2), thus changing the local 

atomic connectivity through local configurational excitation (LCE).  In Figure 3 τM and τLC are 

shown in logarithmic scale against 1/T for various systems.  Both show the Arrhenian behavior at 

high temperatures, but deviate from it below TA, the crossover temperature.  Figure 3 suggests 

that τM and τLC are similar in value above TA for all systems. 

 It is interesting to note that in all liquids, other than the KA model which has a rather 

different energy scale, τM and τLC extrapolate to about τ∞ = 20 fs at the limit of T → ∞ (Table 1).  

This value of τ∞ corresponds to about 200 meV.  The activation energy is also about 200 meV.  

These results are more consistent with the LCE’s characterized by the bond energy (250 meV for 

Fe) than phonons (the Debye frequency is about 40 meV).    

We show in Figure 4 the ratio, τM /τLC, as a function of T/TA for various systems 

including the results of the ab-initio MD simulations.  In spite of differences in composition and 

the method of MD this ratio, τM /τLC, is remarkably close to unity at temperatures above TA.  

Given some small uncertainty in defining the nearest neighbors, as discussed in the Supplemental 

Material, the result strongly suggests that the relation, 

 

M LCτ τ=   (T  > TA),       (4) 

 

is universally valid for metallic liquids at high temperatures.  This is an important result, because 

this equation directly connects a macroscopic quantity, τM, with a microscopic quantity, τLC.  In 

liquids phonons are strongly scattered, short-lived, and cannot be used as the basis to explain 

other properties such as viscosity which shows the Arrhenian behavior.  Instead, this result 

suggests that LCE is the elementary excitation in the high-temperature liquid.  LCE’s are not 
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long-living harmonic excitations as are phonons.  However, they are the elementary steps to 

change the atomic connectivity network, and directly control the macroscopic viscosity.  Thus it 

is likely that LCE’s represent the full degrees of freedom in the liquid as elementary excitations, 

just as phonons do in solids.     

 From equations (1) - (3) we obtain [21], 
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Therefore equation (4) means that the lifetime of the shear correlation function is determined by 

the lifetime of local atomic connectivity.  This is reasonable because the macroscopic shear 

stress is a sum of the atomic-level shear stresses [22], and the atomic-level stress is determined 

largely by the topology of the nearest neighbors [23].  For instance the atomic-level pressure is 

linearly related to the local coordination number [24].  Thus LCE’s are the elementary 

excitations for the atomic-level stresses.  This explains why the equipartition theorem for atomic-

level stresses [23] as well as the Dulong-Petit law [3] are valid for high-temperature liquids. 

 We find that the crossover phenomena at TA are closely related to localization of phonons.  

The mean-free path of transverse phonon,  

 

 p T Mcξ τ=           (6) 

 

where cT (= 0G ρ∞ , ρ0 is the physical density) is the transverse sound velocity, decreases with 

increasing temperature.  At high temperatures it is shorter than a, the distance between the 
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nearest neighbors, and phonons are localized [25,26].  The temperature T1, at which ξp becomes 

equal to a (see Supplemental Material), is shown by arrows in Figure 4, demonstrating that T1 is 

very close to TA.  Agreement between TA and T1 is not perfect, but this may be partly because TA 

is not so accurately defined due to the crossover nature of the phenomena.  Interestingly in the 

case of KA glass we had to use the second neighbor B-B distance for a, because of the strong A-

B chemical bond.  Above TA the lifetime of local atomic configuration is so short that the local 

atomic connectivity changes before atoms communicate with neighbors through atomic 

vibrations.  Thus LCE’s are independent of each other above TA.       

 In the energy landscape picture, below the crossover temperature the system starts to 

sample deeper landscape minima, and enters the “landscape influenced” regime [3, 27].  A 

number of properties of liquid exhibit significant changes in their nature through TA [6-8, 28, 29].  

However, it had not been known what controlled the crossover point.  The present result makes 

clear that the dynamic communication among atoms is the deciding factor, and the Ioffe-Regel 

localization [25] of transverse phonons into the LCE’s is the physics behind this phenomenon.           

 Below TA the ratio, τM /τLC, increases with decreasing temperature.  Because the local 

atomic connectivity is closely related to the atomic level stresses, an LCE, the action of breaking 

or creating a bond, will change the atomic level stresses of the two atoms involved in the broken 

or created bond.  At T > TA τLC is too short for LCE to affect neighboring atoms other than the 

two involved in the bond, but at low temperatures τLC is long enough for LCE’s to create 

dynamic long-range stress field around them, just as the atomic level stresses do [23, 24].  Thus 

LCE’s can interact through the dynamic elastic field they create [30].  For instance they could 

shield each other to cancel the long-range elastic field to reduce the elastic energy.  The increase 

in the τM /τLC ratio below TA may be related to such interactions among LCE’s.  The definition of 
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LCE as the elementary excitation in the high-temperature liquid state opens the possibility of 

describing the dynamics of low-temperature liquids in terms of interactions among LCE’s.  The 

way the ratio, τM /τLC, increases below TA is related to fragility [7].  Therefore fragility as well as 

the approach to the glass transition could be explained in terms of the interactions among LCE’s.  

Incidentally, when the liquid flow is induced by applied stress below Tg, bond creation and 

annihilation are locally coupled to form a bond-exchange action, so that the τM /τLC ratio is equal 

to 1/2 [20].  

  In conclusion we studied the dynamics of simple metallic liquids through classical as 

well as ab-initio MD simulations.  We discovered that the dynamics of the local excitations in 

the atomic connectivity network determines the macroscopic viscosity of a liquid at high 

temperatures.  The local configurational excitations (LCE’s) in the atomic connectivity network 

are the elementary excitations in liquids, and their competition against phonons determines the 

cross-over phenomenon in liquids.  The atomistic picture of liquid flow thus attained illustrates 

the importance of atomic dynamics in liquid flow, and will impact the way we perceive and 

describe the flow of liquid.     
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Table 1   Values of τ∞ and activation energy at temperatures above TA, Ea, of τM for three models.  

The KA model has a different energy scale. 

Model τ∞ (fs) Ea (meV) 
Fe 15.3 270 

Cu-Zr 19.3 192 
Zr-Cu-Al 23.0 181 
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Figure captions: 

 

Figure 1.   Bond lifetime, τB, α-relaxation time, τα, Maxwell relaxation time, τM, and the lifetime 

of local atomic connectivity, τLC, calculated for liquid iron as a function of Tg/T, where Tg = 

950K and T is temperature.  See text for the definition of each relaxation time. 

 

Figure 2.   Change in the local atomic connectivity by losing or gaining one nearest neighbor.   

 

Figure 3.  Temperature dependence of the Maxwell relaxation time, τM, and the lifetime of local 

atomic connectivity, τLC, calculated for various models of liquid as a function of 1/T.  TA is the 

crossover temperature above which the Arrhenius behavior is observed. 

 

Figure 4.   The ratio, τM/τLC, plotted against T/TA for various models, including the results of the 

ab-initio MD simulation for Cu-Zr.  Above TA, τM is approximately equal to τLC for all systems.  

T1 is the temperature at which p T Mcξ τ=  becomes equal to a, the nearest neighbor distance.  

Agreement between T1 and TA suggests that the crossover phenomenon is determined by the 

ability of crosstalk between the neighboring atoms by the phonon exchange. 
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Fig. 3 
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