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Many physical and biological oscillators are coupled indirectly through a slowly evolving dynamic
medium. We present a perturbation method that shows that slow dynamics of a coupling medium
is effectively equivalent to weak coupling of oscillators. Our methods first apply the theory of
averaging to obtain a periodic solution to a single system and then exploit small fluctuations around
the mean to analyze coupling between systems. We use this method to explain the spike-to-spike
asynchrony seen in a model for bursting neurons coupled through extracellular potassium and to
explore synchronization in a model for quorum sensing.
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How can fast rhythmic phenomena interact indirectly
by influencing a common external medium that may be
changing at a rate orders of magnitude slower than their
intrinsic time scale? Such issues arise commonly in bio-
logical systems with multiple time scales. One relevant
example system is a set of neurons firing repeated ac-
tion potentials or spikes. Each spike that a neuron fires
slightly alters ion concentrations in the neighborhood of
the neuron. If the neurons lie in sufficiently close spatial
proximity that they share extracellular ions, as occurs
in many brain regions, then rapid spiking can cause a
slow drift in common extracellular ion concentrations,
which effectively couples all the neurons [1–3]. A sec-
ond example arises in synthetic gene networks engineered
to provide insights about natural genetic oscillators. In
each cell in the relevant networks, gene expression leads
to production of corresponding proteins and of an au-
toinducer. The extracellular autoinducer concentration
is sensed by all of the cells, providing an indirect inter-
action mechanism known as quorum sensing [4, 5]. On
quite a different spatial scale, similar issues may arise
in ecological settings, where individuals’ short-term be-
haviors cause gradual changes to a common environment
that in turn influences the fast timescale oscillations of
population dynamics.

Many decades of computational, theoretical and exper-
imental study have elucidated a wide range of ways that
direct coupling can affect oscillator dynamics. A vari-
ety of theoretical tools have been developed to facilitate
these efforts. In particular, weak coupling theory [6, 7]
provides a powerful analytical approach to predict the
impact that small direct perturbations have on oscilla-
tion phase. Much less is known about effects of indirect
coupling through an external medium. Computational
studies have revealed possible links between extracellular
coupling and brain disorders such as epilepsy and spread-
ing depression (see [8] and references therein). Methods
for studying such indirect coupling analytically, however,
are in scarce supply.

To impose a common terminology on all such exam-
ples, we will refer to an external medium through which
oscillators interact as the “bath” and the coupling via

this bath as “bath coupling.” The main result of this
paper is a general formula that we derive for the evo-
lution of phases in a network of oscillators interacting
through slowly evolving bath coupling, which shows how
information about the phase of fast oscillations is trans-
mitted through bath coupling and which can be used to
evaluate the stability of phase-locking between pairs of
bath coupled oscillators. The derivation harnesses weak
coupling theory, even though the size of the bath cou-
pling term in the equation for each oscillator need not be
small. We illustrate our results by using them to explain
spike desynchronization in a model for epileptogenesis,
where spiking neurons interact through a slowly evolv-
ing extracellular potassium concentration. Subsequently,
we apply our method to study synchrony in a simplified
model for quorum sensing.
For our general approach, we consider the following

system:

dXi/dt = F (Xi, y), (1)

dy/dt = ǫG(X1, . . . , XN , y) :=
ǫ

N

N
∑

j=1

g(Xj, y),

where Xi are vectors of model components that together
form the fast subsystem and are modulated by the slowly
varying scalar quantity y, with 0 < ǫ ≪ 1 a small parame-
ter. We assume there is a value ȳ such that X ′ = F (X, ȳ)
has a T−periodic stable limit cycle, Φ(t), and that
∫ T

0
g(Φ(t), ȳ) dt = 0. These conditions assure that there

is a limit cycle solution toX ′ = F (X, y), y′ = ǫg(X, y) for
small ǫ. Note that in equation (1) there is no interaction
between the Xi if we keep y constant. While y is nearly
constant, it in fact fluctuates with an O(ǫ) magnitude
around ȳ and thus communicates weak phasic informa-
tion among the Xi. We expand around the limit cycle as
y = ȳ+ ǫw(t) and Xi(t) = Φ(t+θi)+ ǫΨi(t+θi) where θi
are arbitrary phases; we assume that θi evolve on a slow
time scale, τ = ǫt. The correction terms, Ψi, account for
effects in the amplitude and shape of the limit cycle. We
see that w′ = (1/N)

∑

j g(Φ(t + θj), ȳ) + O(ǫ) whence,

to leading order, w(t) = (1/N)
∑

j p(t+ θj) where p(t) =



2

p(0)+
∫ t

0 g(Φ(s), ȳ) ds := p(0)+q(t). Note that p(0) is un-
known and that p(T ) = p(0) by our choice of ȳ. The value

p(0) is set by forcing (1/T )
∫ T

0 y(t) dt = ȳ; that is, the

average of p(t) must be zero, so p(0) = −(1/T )
∫ T

0
q(t) dt.

Now, we return to the coupled system (1), from which
we extract the O(ǫ) equation

Ψ′

i(t+ θi) = Fx(Φ(t+ θi), ȳ)Ψi(t+ θi)− Φ′(t+ θj)
dθi
dτ

+ Fy(Φ(t+ θi), ȳ)
1

N

N
∑

j=1

p(t+ θj).

This is a classic weak coupling equation (see for example
[9]) and we can immediately characterize the evolution
of the phases:

dθi/dτ =
1

N

N
∑

j=1

H(θj − θi), (2)

H(φ) =
1

T

∫ T

0

Z(t) · Fy(Φ(t), ȳ)p(t+ φ) dt. (3)

Here, Z(t) satisfies the adjoint equation Z ′(t) =
−[Fx(Φ(t), ȳ)]

TZ(t) with Z(t) · Φ′(t) = 1. For N = 2,
we can write a single equation for φ = θ2 − θ1, which
takes the form

dφ/dτ = H(−φ)−H(φ) = −2Hodd(φ). (4)

Zeros of Hodd(φ) are phase-locked states; those for which
H ′

odd(φ) > 0 are asymptotically stable while H ′

odd(φ) < 0
implies instability. We next illustrate our results in two
specific models.
Simulations of bath coupled neuron pairs, described by

a model linking the dynamics of membrane potential and
of ion concentrations, exhibit synchronized bursting ac-
tivity, with alternating quiescent and spiking periods [8].
Within each burst, however, the neurons’ spikes occur
out-of-phase. It has been shown previously that the out-
of-phase firing of spikes within bursts has the potential to
extend the parameter range over which bursting occurs,
to prolong active phases of bursts, and to alter burst fre-
quency [10–13]. We thus consider spike synchrony in a
bath coupled model [8]. This model comprises Hodgkin-
Huxley type equations for the membrane voltages, Vj(t),
of two cells, along with equations for the cells’ intracel-
lular sodium concentrations and the shared extracellular
potassium concentration:

CdVj/dt = −(INa(Vj , hj) + IK(Vj , nj) + IL(Vj)) (5)

where INa(V, h) = gNam∞(V )h(V − ENa), IK(V, n) =
gKn4(V −EK), and IL(V ) = gNa,L(V −ENa)+gK,L(V −

EK)+gCl,L(V −ECl) are transmembrane sodium, potas-
sium, and leak currents, respectively. In these expres-
sions, m∞(Vj), nj , and hj are gating variables, with
nj , hj governed by equations of the form dx/dt =
φ(αx(V )(1 − x) − βx(V )x). Critically for our study,
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FIG. 1: Synchronized bursting in the two-cell model. (A)
One cell’s membrane potential (red), the shared extracellular
potassium concentration (blue), and one cell’s intracellular
sodium concentration (magenta). The two cells’ potentials
and sodium concentrations are indistinguishable on this scale
due to a high level of synchrony. (B) Magnified view of both
cells’ potentials near the onset of spiking within a burst re-
veals the development of asynchronous spiking. (C) A zoomed
view of a burst showing small fluctuations in the potassium
concentration during spiking.

sodium and potassium reversal potentials in mV are not
constant but are specified by the Nernst equationsENa =
26.64 ln ([Na]o/[Na]i) and EK = 26.64 ln ([K]o/[K]i).
The intracellular (i) and extracellular (o) ion concentra-
tions, in mM, obey the equations (j = 1, 2):

d[K]o/dt = ǫ(γβ/2)(IK(V1, n1) + IK(V2, n2)) (6)

− β[Ĩpump(([Na]i)1) + Ĩpump(([Na]i)2)]

− Ĩglia([K]o)− Ĩdiff ([K]o)

d([Na]i)j/dt = ǫ
(

−γINa(Vj , hj)− 3Ĩpump(([Na]i)j)
)

,

([K]i)j = 158 − ([Na]i)j), and [Na]o = 144 −

(β/2)[([Na]i)1 + ([Na]i)2 − 36]. The latter two rela-
tions are based on conservation of sodium and the re-
lation of sodium and potassium transport [14, 15], while
γ, β, ρ are parameters used to convert units and account
for differences in intracellular and extracellular volumes.
The equation for [K]o is modified from the original [8]
to take into account that both neurons share a com-
mon extracellular potassium supply; we also changed
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ǫ from 10−3 to 10−2 to speed up simulations while
leaving model dynamics qualitatively unchanged in the
regime we considered. The components of equation (6)
are the outward potassium current IK from equation
(5), a potassium/sodium pump current Ĩpump([Na]i) =
ρ[1 + exp((25 − (Na)i)/3)]

−1[1 + exp(5.5 − [K]o)]
−1, a

glial potassium uptake current Ĩglia = G[1 + exp((18 −

[K]o)/2.5)], a diffusion current Ĩdiff = η([K]o − kbath),
and the inward sodium current INa from equation (5),
with the parameters G = 20mM/s, η = 0.133Hz and
kbath = 22mM selected to focus on a particular type of
bursting solution (see Figs. 3B-4B of [8]).
For a model network of two cells, parameters could be

tuned to give similar types of bursting behavior to those
reported previously for a single cell [8]. Within the burst-
ing solutions that we consider, the timing of the active
phase periods for the two cells was tightly synchronized
(Fig. 1A). While voltages were synchronized during qui-
escent phases of each burst, some voltage desynchroniza-
tion occurred as soon as cells started to spike, with a pro-
gressive shift towards anti-phase spiking over the course
of active phase (Fig. 1B). Interestingly, the particular
bursts shown in Fig. 1 included periods where spiking
was interrupted by depolarization block; although volt-
ages appeared to be synchronized during each depolar-
ization period, some phase information appeared to be
maintained, such that the cells’ spikes were phase-shifted
when they resumed.
Fig. 1C offers a more magnified view of the time course

of [K]o and shows small fluctuations around a slow drift
during the active phase of each burst. Since the cou-
pling between cells in the model occurs only through
[K]o, these [K]o fluctuations provide a means to commu-
nicate spike-by-spike phase information. To understand
how this communication occurs we now apply the above
theory.
For model (5)-(6), we would like to equate each fast

spiking event within a burst to the limit cycle Φ in the
general theory, with slow variable [K]o. In fact, the
individual spikes do not correspond to a true limit cy-
cle of the fast subsystem; over each spike, [K]o does
not fluctuate around a constant value but rather around
a slowly drifting baseline. But, the phase information
in each spike is independent of this drift. Thus, to
evaluate the stability of phase-locking at a particular
point on the orbit of a burst, we choose the [K]o there
and use this as our ȳ, and we add a constant to the
right hand side of the [K]o equation in (6) to remove
the slow drift. Generally, for model (1), we can ad-
just the y equation to y′ = ǫ[G(X1, . . . , XN , y) + k] for

k = −(1/T )
∫ T

0 g(Φ(t), ȳ) dt to attain the mean value
ȳ and eliminate any baseline drift, such that the above
theory applies. Since the other slow variables [Na]i are
intracellular and thus communicate no phasic informa-
tion, we simply fix them at the values they take at the
selected point on the orbit.
In sum, we select a point within the burst and com-

pute the corresponding fast subsystem periodic orbit, the
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FIG. 2: Analysis of spike desynchronization for model (5)-
(6). (A) Phase plane projection of [K]o and [Na]i for one cell
during a burst. Sample points used for averaging are labeled.
(B) Odd part of the interaction function, Hodd(φ), for the five
squares in panel (A) showing that synchrony is unstable and
anti-phase spiking is stable. Phase has been rescaled to lie
between 0 and 1. (C) Hodd(φ) for the five circles in panel
(A). Anti-phase is always stable while synchrony is unstable
except at low and high [K]o.

constant k, the resulting w(t) from the adjusted y equa-
tion, and the voltage component of the adjoint solution,
V ∗(t). From these, we compose the interaction function,

which for this model isH(φ) = (1/T )
∫ T

0 26.64V ∗(t)w(t+

φ)[gKn4(t)+gK,l]/(CK̄) dt, where K̄ is the value of [K]o
at the selected point. Fig. 2B shows Hodd(φ) for the
points labelled by the five squares on the lower part of
the [K]o− [Na]i projection of a burst, shown in Fig. 2A.
(We note that the lower segment corresponds to the first
part of the burst in Fig. 1A and the upper segment to the
second smaller part of the burst.) In all cases the slope
through the rescaled phase, φ = 1/2, is positive, which



4

0

10

20

30

40

50

60

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

(K)

Hodd
a 2

synchronyφ

log

antiphase

10

FIG. 3: Stability diagram for a pair of bath-coupled repressi-
lators governed by (7). Parameters are κ = 0.2, α = 216, β =
1, η = 1 with K varying between slow and fast. For K large
enough, synchrony is the only attractor while for K small,
the anti-phase solution is stable. Inset: Hodd(φ) for the two
limits, K → ∞ (fast, black) and K → 0 (slow, red). In these
extremes anti-phase and synchrony exchange stability.

means that the anti-phase solution is stable. Addition-
ally, the slope through 0 is always negative so that syn-
chrony is unstable. Thus, over the entire transit through
the first part of the burst, spikes will be pushed into an-
tiphase. Fig. 2C shows Hodd(φ) for the second part of
the burst at the points labelled by circles in the top seg-
ment of the orbit in Fig. 2A. At the start of this part of
the burst, synchrony is very weakly stable (H ′

odd(0) > 0
for [K]o = 25.60) and anti-phase is also stable. How-
ever, by the time [K]o has dropped to 22.49, synchrony
loses stability and the only stable state is anti-phase, such
that spiking becomes progressively closer to anti-phase
as the burst evolves. Near the end of the burst, syn-
chrony becomes stable again, but since anti-phase is still
stable, anti-phase spiking continues through the termi-
nation of the oscillatory activity. This analysis provides
an intuitive mechanism for the active desynchronization
of spikes during a slow passage through a burst: small
fluctuations of the bath coupling around a slowly drifting
mean provide information about spike timing that acts
as a weak coupling to push spike times apart.

There has been a great deal of interest in the coupling
of genetic and other regulatory systems in bacteria and
other organisms. In [4], the authors showed that bacte-
ria transfected with a set of genes that generate an au-
tonomous oscillation (the repressilator) were able to syn-
chronize through quorum sensing, namely coupling via
an autoinducer dependent on proteins produced by all
population members. A weak coupling analysis was per-
formed under the assumption that the coupling through
this shared bath was instantaneous. Here, we allow the
bath M to evolve over a range of time scales and apply
weak coupling analysis and our new slow coupling anal-
ysis to show that there is a switch from synchrony to

anti-phase activity for a coupled pair of cells. The model
equations (i = 1, 2) are

dai/dt = −ai + α/(1 + C2
i ), dAi/dt = β(ai −Ai),

dbi/dt = −bi + α/(1 +A2
i ), dBi/dt = β(bi −Bi),

dci/dt = −ci + α/(1 +B2
i ) + κ(M − ci),

dCi/dt = β(ci − Ci),
dM/dt = K[−M + η( c1+c2

2 −M)].
(7)

As in [4], we couple to the bath via the variable c. We
use a simpler form of coupling (linear diffusive) than was
used in [4] as it allows us to compare the slow and fast
coupling more directly.
In [4], the analysis was done in the limit as K → ∞

(the quasi-steady state hypothesis) and it was assumed
that κ was small, so that a weak coupling analysis would
apply. Fig. 3 shows a “stability” diagram for (7) as
K varies between 10−3 and 10. The value of a2(t) is
plotted each time a1(t) increases through 20. For each
K, we start near the synchronous solution and let the
system evolve for 10000 time units (the period is about
15 time units) and plot only the points from the last
1000. For K larger than 10−0.4, synchrony is stable
and for K smaller than about 10−0.7, anti-phase is sta-
ble. In between, a complex series of bifurcations oc-
curs. To understand the result for large K (“fast”), we
set M to its quasi-steady state value so that the cou-
pling becomes κ[(c1 + c2)η/[2(1 + η)] − ci] and an ap-
plication of weak coupling theory leads to Hfast(φ) =

κ
2T (1+η)

∫ T

0 c∗(t)[c(t + φ) − (η + 1)c(t)] dt. Here c∗(t) is

the c-component of the adjoint and c(t) is the c− compo-
nent of the isolated limit cycle. In the odd part of Hfast,
the slope through 0 is positive (Fig. 3, inset) and the
slope through 0.5 is negative, so synchrony is stable and
anti-phase unstable. We next apply the theory developed
in this paper to handle the case whenK → 0. (We remark
that for this case, κ need not be small; we chose a small
value of κ so we could compare to the fast coupling case.)

In this case, Hslow(φ) = κ
2T

∫ T

0
c∗(t)[p(t) + p(t + φ)] dt

where p(t) = p(0)+
∫ t

0 c(s) ds. The slope of the odd part
of Hslow at 0.5 is positive and at 0 is negative (Fig. 3,
inset), so synchrony is unstable and anti-phase stable.
Interestingly, the interaction for fast bath coupling de-
pends on c(t) while for slow coupling it depends on the
integral of c(t).
Weak coupling theory, based on averaging over the pe-

riod of an underlying limit cycle oscillation, provides an
effective way to assess the stability of phase relations re-
sulting from small magnitude interactions transmitted in-
stantaneously between coupled oscillators [6, 7]. In this
paper, we have considered systems with large magnitude
interactions, which would appear to be outside the scope
of weak coupling theory. Two insights, however, allow
us to extend the mathematics of weak coupling theory to
this scenario. First, in a limit in which coupling becomes
constant in time, the oscillators become uncoupled, so
small fluctuations about a large constant coupling term
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act like weak coupling. Second, small fluctuations around
a slowly drifting coupling term act like small fluctuations
around a constant coupling term. Using these insights,
we show that for two neurons coupled through a shared
extracellular potassium concentration, in a certain burst-
ing regime, the neurons’ bursts synchronize but the spikes
they fire within these bursts are pushed away from syn-
chrony by the phase information within each spike. While
the physical reasoning for why H ′(0) < 0 is outside the
scope of our mathematical theory, increased extracellular
potassium due to release during a slightly leading spike
could either prolong or truncate a following spike, and our
theory suggests that the former effect is dominant. Our

theory also goes beyond previous results to demonstrate
that quorum sensing in genetic oscillators may or may
not yield synchronization depending on the time scale at
which the coupling medium evolves, with destabilization
of synchrony for a sufficiently slow medium.
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