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We perform a theoretical and experimental study of a system of two ultracold atoms with tunable
interaction in an elongated trapping potential. We show that the coupling of center-of-mass and
relative motion due to an anharmonicity of the trapping potential leads to a coherent coupling of
a state of an unbound atom pair and a molecule with a center of mass excitation. By performing
the experiment with exactly two particles we exclude three-body losses and can therefore directly
observe coherent molecule formation. We find quantitative agreement between our theory of inelastic
confinement-induced resonances and the experimental results. This shows that the effects of center-
of-mass to relative motion coupling can have a significant impact on the physics of quantum systems
near center-of-mass to relative-motion coupling resonances.

A key question in condensed matter physics is how
the dimensionality of a quantum system determines its
physical properties. Especially in one dimension the in-
creased role of quantum fluctuations leads to the appear-
ance of interesting phenomena which cannot be observed
in higher-dimensional systems. This poses the interest-
ing question of how to experimentally realize such one-
dimensional (1D) systems in a three-dimensional (3D)
world. This can be achieved by confining particles in
a strongly anisotropic potential whose lowest transver-
sal excitation is much larger than all other relevant en-
ergy scales of the system. In this case a 3D system can
be mapped onto a true 1D system obtaining an effec-
tive 1D coupling constant g1D which depends on the 3D
scattering length a [1]. In such anisotropic confinement,
ultracold atoms have been used to study, e.g., the Tonks-
Girardeau [2–4] and super-Tonks-Girardeau [5] gas as
well as the fundamental question of what constitutes an
integrable quantum system [6].

Such experiments [5, 7–10] often rely on the fact that
it is possible to control the effective 1D coupling strength
g1D by tuning the scattering length a with a Feshbach res-
onance [11]. For a specific ratio of the scattering length
and the transversal confinement length d⊥, g1D diverges
to ±∞ at a confinement-induced resonance (CIR) [1].
To distinguish these resonances in the elastic scatter-
ing channel from the molecule-formation resonances we
study in this paper we will refer to them as elastic CIRs.

A common experimental approach [12] to character-
ize such resonances has been to look for increased loss
of atoms caused by enhanced three-body recombination
in the vicinity of the resonance. However, this interpre-
tation of the observed losses has been called into ques-
tion by a recent experiment which observed a splitting
of loss features under transversally anisotropic confine-
ment [12], although later theoretical works showed that
no such splitting of elastic CIR can occur [13, 14]. One

proposed explanation for the splitting is based on the fact
that the trapping potentials used in experiments are not
perfectly harmonic. This leads to a coupling of center-
of-mass (COM) and relative (REL) motion [15], which in
turn can lead to a coupling of two atoms in the ground
state of the trap to a weakly bound molecular state with
a COM excitation [16] (further elaborated on in [17]).
The occupation of the bound state is only possible be-
cause the excess binding energy can be transferred into
COM excitation energy due to the anharmonictiy of the
confining potential. This redistribution of binding en-
ergy to kinetic energy is an inelastic process and thus we
refer to these COM-REL coupling resonances as inelas-

tic CIR. COM-REL coupling is also present in harmonic
confinement in the case of heteronuclear atoms [18–20]
and is not restricted to reduced dimensionality [21–24].
It occurs even in mixed dimensions [20].

In a many-body system losses at the inelastic CIR can
be described as a two-step process: First, two atoms
coherently couple to the COM-excited molecular state.
Then, this molecule collides either with another molecule
or an unbound atom, which leads to a deexciation of the
molecule into a deeply bound state and subsequent loss
of the involved particles from the trap.

However, also different theoretical models have been
developed to explain the observed splitting of the loss
features in [12]. These argue with enhanced three-body
effects in the vicinity of elastic CIR. One is based on mul-
tichannel effects [25], others [12, 26] on a Feshbach-type
mechanism. In a many-body system as used in [12] differ-
ent loss mechanisms are in principle possible and cannot
be clearly distinguished by the experiment. A straight-
forward, yet experimentally challenging solution to this
problem is to eliminate three-body effects by investigat-
ing a pure 2-body system. In this work we provide a di-
rect experimental confirmation of the theory developed in
[16] by performing a theoretical and experimental study
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of two 6Li atoms in an elongated trapping potential with
a slight ellipticity. Ab initio calculations of the coupling
strengths, the widths and the positions of the coherent
molecule formation at the inelastic CIR are found to be
in quantitative agreement with the experimental results.

To prepare a quasi-1D two-body system we follow
the same preparation scheme as described in [10, 27],
which has a fidelity of about 90%. The two particles
are trapped in the ground state of a cigar-shaped po-
tential with a mean transversal confinement length of
d⊥ =

√

~/µω⊥ = 0.486 ± 0.006µm, where µ is the re-
duced mass and ω⊥ the mean trap frequency [28]. The
trap has an aspect ratio of about 10:1, which is well in
the quasi-1D regime [29]. The shape and anharmonic-
ity of the potential have been characterized by precise
measurements of the transition frequencies for exciting a
single particle into the first and second excited level in
the longitudinal and both transversal directions [28].

This two-body system is in absolute coordinates de-
scribed by the Hamiltonian

H(r1, r2) = T1(r1) + T2(r2) + V1(r1) + V2(r2) + U(|r1 − r1|)
(1)

where T1, T2, V1, V2 denote the kinetic energies and po-
tential energies due to the trap of particles one and two,
respectively, and U the interatomic interaction. It has
been demonstrated that sextic potentials, i.e. expansions
of a sin2 optical-lattice potential up to order six,

V (r) =
∑

j=x,y,z
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j j
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4
j j

4 + Vjk
2
j j

2, (2)

are well suited to describe anharmonicity induced COM-
REL coupling in single-well potentials [15], like the one
used in our experiment.

The stationary Schrödinger equation for the Hamilto-
nian (1) can be solved exactly by the computational ap-
proach described in [30]. Herein, the interaction potential
is treated by a numerically given Born-Oppenheimer po-
tential curve of a 6Li system. The variation of the scat-
tering length due to the magnetic Feshbach resonance
can be modeled computationally by modifying the inner
wall of the potential curve which effectively changes the
scattering length of the system to arbitrary values [31].

For a two-particle system it is convenient to transform
the Hamiltonian in REL and COM coordinates, r = r1−
r2 and R = 1

2 (r1 + r2), respectively,

H(r,R) = TREL(r) + TCOM(R) + VREL(r)

+ VCOM(R) + Uint(r) +W (r,R). (3)

VREL(r) and VCOM(R) are the separable parts of the
sextic potential [15]. Thus, W (r,R) contains only the
non-separable terms, i.e. a polynomial in r2jR

2
j , r

2
jR

4
j and

r4jR
2
j . The potential parameters Vj and kj are obtained

by fitting the eigenenergies of a single particle in a sex-
tic potential to the experimentally measured transition
energies of a single particle in the trap. The fit results
are given in [28]. The eigenenergies and wavefunctions of
the Hamiltonian (3) can now be calculated via exact di-
agonalization for different values of the s-wave scattering
length. A fully coupled spectrum is shown in Fig. 1.
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Figure 1. (color online) Eigenenergy spectrum of the Hamilto-
nian (3) for 6Li atoms confined in a sextic trapping potential.
In the upper part all states bending down to −∞ are molec-
ular states originating from the REL bound state ψ(b) with
different COM excitations. The two bound states marked in
red are the only ones which have a significant coupling to the
repulsive state (blue). For the other states (gray) the coupling
is negligible. The magnified part shows the avoided crossings
responsible for the COM-REL resonances.

Relative motion bound states ψ(b) with COM excita-
tion Φn, n = (nx, ny, nz) (i.e. states bending down to
negative infinity) cross with trap states, i.e. states whose
energy converges asymptotically to a constant value for
a → 0+. In the absence of a trapping potential these
states would lie in the continuum. The system is initially
in the lowest trap state, i.e. dominantly in the relative
motion repulsive state ψ0 and COM ground state Φ(0,0,0)

(see blue state in Fig. 1). Hence, it suffices to consider
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crossings with this state. The coupling, and equivalently
the size of the avoided crossings, is described by the cou-
pling matrix elements

Wn = 〈ψ(b) Φn|W |ψ0 Φ(0,0,0)〉. (4)

In [16] it was demonstrated that in quasi 1D only
the lowest transversally COM excited bound states,
|ψ(b) Φ(2,0,0)〉 and |ψ(b) Φ0,2,0〉 (see red states in Fig. 1),
couple significantly with the lowest trap state. There-
fore, in Fig. 1 only the transversally excited bound states
form significant avoided crossings with the repulsive trap
state. Due to the transverse anisotropy of the trap these
crossings are non-degenerate which results in a splitting
of the resonances. Such a splitting was also observed in
[12] in quantitative agreement with the positions of the
inelastic CIR [16].
To demonstrate that the crossing states possess char-

acteristics of a bound and a trap state the mean radial
density

r =

∫

∞

0

dr r ρ(r). (5)

was calculated. Here,

ρ(r) = r2
∫

dVR dΩr |Ψ(r,R)|2 (6)

is the radial pair density where Ψ(r,R) denotes the full
six-dimensional wavefunction of the system, dVR is the
COM volume element and dΩr is the angular volume ele-
ment of the REL motion. At dy/a = 1.38 the bound state
has a mean radial distance of r = 0.29 d⊥, i.e. it is small
compared to the mean transversal confinement length.
This demonstrates the strong binding of the atoms. In
the trap state, the atoms possess a mean distance of
r = 1.19 dz = 3.06 d⊥. This mean distance which is of
the order of the longitudinal trap length dz = 1.25µm is
a consequence of the elongated trap.
In the vicinity of the avoided crossing the system can

be approximately described as a two-level system because
the other states are energetically almost inaccessible.
When the scattering length is ramped non-adiabatically
towards the crossing and stopped in the gap region of the
avoided crossing the system finds itself in a coherent su-
perposition of the two adiabatic states [32], which in our
case are the bound state |ψ(b) Φn〉 and the repulsive trap
state |ψ0 Φ(0,0,0)〉. Since both states evolve with different
phase a Rabi-oscillation between the states occurs with
the frequency

Ω =
1

~

√

W 2
n
+ δ2 (7)

which is a measure for the coupling strength for δ =
(Eb−Et)/2 = 0. Here,Wn is the coupling matrix element
from Eq. (4) while Eb and Et denote the energies of the
diabatic bound and trap states, respectively.

Experimentally this coherent superposition is realized
by first preparing two 6Li atoms in the ground state of
the potential and then increasing the scattering length a
by ramping up the magnetic offset field non-adiabatically
with a speed of 20G/ms [33]. To locate the molecule
formation resonances the ramp is suddenly stopped at
different values of the magnetic offset field. The popula-
tion is expected to oscillate between the unbound and the
COM-excited molecular state as a function of the Rabi
frequency Ω which depends on the magnetic field.

In a first experiment we wait for a fixed hold time
of 12.5ms after stopping the ramp at different magnetic
field values between 779G and 788G [34]. We then mea-
sure the number of free atoms remaining in the ground
state of the trap by ramping to a magnetic field of 523G
where the molecules are deeply bound and therefore not
observed with our detection scheme. Thus, the mean
number of molecules is given by Nmol = (N0 −NGS)/N0,
where N0 is the mean number of atoms in the initial sys-
tem and NGS is the mean number of particles detected
in the non-molecular ground state at the end of the ex-
periment. To check whether the missing atoms indeed
end up in the molecular state we repeated the experi-
ment but ramped the magnetic field to a value of 900G
before measuring the number of particles. At this mag-
netic field we are far above the elastic CIR so that the
molecules become weakly bound and the constituent par-
ticles of the molecules can be detected with our detection
scheme. We found that there is no measurable change
compared to the initial particle number when measuring
above the elastic CIR, which excludes the presence of any
significant loss channels in our system. Figure 2 shows
the detected number of particles in the repulsive state de-
pending on the magnetic offset field. As expected from
numerics, two peaks are observable which are identified
as the COM-REL motion coupling resonances created by
the two molecular states excited in x- and y- direction of
the anisotropic confinement.
To analyze the dynamics of the coupling we ramped to
different values of the magnetic offset field around the
features shown in Fig. 2 and held the system for different
hold times. With less than 10% probability we detect
only a single atom in the trap, i.e., with more than 90%
probability the two atoms are either free (two atoms de-
tected) or bound to a molecule (no atoms detected). The
few realizations with just a single atom detected are not
considered in the analysis. Fig. 3 a) shows the result of
one of these measurements. The oscillation of the frac-
tion of molecules shows that we have created a coherent
superposition of the molecular and the repulsive state.
By performing a sinusoidal fit to the data we can extract
the Rabi frequency Ω of the oscillation. The maximum
amplitudes of the oscillation for different magnetic fields
are shown in figure 3 b). From a Lorentzian fit to the
amplitude we can extract the width (FWHM) of the cou-
pling in terms of the magnetic offset field. Table I shows
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Figure 2. Disappearance of particles in the repulsive non-
bound state. Due to the COM-REL motion coupling the par-
ticles in the non-bound state couple into a molecule and disap-
pear when detecting the number of particles in the non-bound
state. One observes two peaks indicating COM-REL motion
coupling resonances involving two excited molecular states in
x- and y-direction of the confinement. Each data point is the
average of about 50 individual measurements with discrete
atom number. The blue dashed line indicates the position of
the elastic CIR at 779.3±0.5G calculated using the transver-
sal confinement length d⊥ and the calibration of the scattering
length a(B) of [35] as inputs for the theory of [36].

the width of the coupling resonances determined from
the measurement. The spacing between the two reso-

COM Position [G] FWHM[G] Ω0/2π [Hz]

excitation exp. num. exp. num. exp. num.

(0, 2, 0) 780.5 776.01 0.25(0.03) 0.35 83(2) 64

(2, 0, 0) 783.2 779.02 0.42(0.06)(∗) 0.35 75(1) (∗) 69

Table I. Comparison between experiment and numerical cal-
culation. (∗) See [28] for these measurements.

nances, see Table I, is in agreement up to 0.3G with the
numerical calculation. The absolute position of the ex-
perimental resonances is shifted about 4.3G compared to
the theoretical values. In view of the width of the elastic
CIR[37] of 250G this is a remarkable accuracy. More-
over, except for the two COM-REL coupling resonances
no significant molecule formation was observed over the
whole width of the elastic CIR.

In conclusion, our results directly show that in a two-
particle system the COM-REL coupling allows for the co-
herent coupling of an unbound atomic pair and a molecu-
lar state without a third particle being present. Compet-
ing processes such as three-body recombination or pro-
cesses involving atoms in higher bands [25] are excluded
by our high preparation fidelity. Hence, the agreement
between the theoretical and experimental results gives a
quantitative confirmation of the theory of inelastic CIR
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Figure 3. Coherent dynamic of the COM-REL motion cou-
pling. (a) Oscillation between the non-bound and the COM
excited molecular state. From a sinusoidal fit we deduce the
Rabi-frequency Ω. (b) Maximum amplitude of the oscillation.
The data points are extracted from measurements analog to
figure a) at different magnetic offset fields.

[16]. Furthermore, our results show that a molecule for-
mation in a two-body system is absent at the elastic CIR
[38]. The results strongly imply that the inelastic reso-
nances are the dominant cause for the appearance of the
two distinct loss features in the experiment by E. Haller
et al. [12] as was already suggested in [16]. In general,
COM-REL motion coupling resonances can have a sig-
nificant impact on the stability of quantum gases and
should therefore be considered in current experiments.
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söllner, V. Melezhik, P. Schmelcher, and H.-C. Nägerl,
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