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Tiny violations of the Lorentz symmetry of relativity and the associated discrete CPT symmetry
could emerge in a consistent theory of quantum gravity such as string theory. Recent evidence for
linear polarization in gamma-ray bursts improves existing sensitivities to Lorentz and CPT violation
involving photons by factors ranging from ten to a million.

Observations of photon behavior provide crucial probes
of fundamental physics. Famous examples include the
classic Michelson-Morley, Kennedy-Thorndike, and Ives-
Stilwell experiments [1], which support the foundational
Lorentz invariance of relativity. In recent years, a wide
range of astrophysical, solar-system, and laboratory tests
of Lorentz symmetry and its associated discrete CPT
symmetry have achieved impressive sensitivities using
photons (see Ref. [2] for a compilation). One motiva-
tion for these efforts is the prospect that tiny violations
of these invariances could emerge in a consistent theory
of quantum gravity such as string theory [3]. In this pa-
per, we use recent measurements of linear polarization
in light from gamma-ray bursts (GRB) [4–6] to improve
existing sensitivities to a variety of Lorentz- and CPT-
violating effects by factors ranging from ten to a million,
thereby placing stringent constraints on a large class of
models with Lorentz violation in the photon sector. The
key to the exceptional GRB sensitivity to Lorentz and
CPT violation lies primarily in the extreme propagation
distances during which tiny effects can accumulate, along
with the comparatively high photon energies involved.

At accessible energies, violations of Lorentz invariance
are governed by the Standard-Model Extension (SME)
[7], a comprehensive effective field theory containing both
General Relativity and the Standard Model that provides
a general theoretical framework for observational studies.
This theory also describes CPT violation in the context
of realistic field theory [8]. The SME action is a sum of
coordinate-invariant terms, including ones formed from
Lorentz-violating operators contracted with controlling
coefficients, and the mass dimension d of each operator
fixes the dimensionality of the corresponding coefficient
[9]. In the photon sector, all gauge-invariant operators
describing the propagation of light have been classified
and enumerated for arbitrary d [10].

The SME predicts that light propagates in the presence
of Lorentz and CPT violation as the superposition of two
normal modes that may differ in speed and polarization.
The most general model includes direction-dependent ef-
fects, and the dispersion relations connecting the photon
energy E and momentum p for the two modes can be
written in the compact but implicit form [7, 10]

E =
(

1− ς0 ±
√

(ς1)2 + (ς2)2 + (ς3)2
)

p, (1)

where the dimensionless quantities ςa = ςa(E, θ, φ) de-
pend both on E and on the photon direction of propaga-
tion, which for an astrophysical point source is fixed by
the source codeclination θ ≡ (90◦ − declination) and by
the right ascension φ. For light propagating in vacuo, the
quantities ςa are linear combinations of the basic SME

coefficients c
(d)
(I)jm, k

(d)
(E)jm, k

(d)
(B)jm, and k

(d)
(V )jm, where j,

m are angular quantum numbers. For each d, many dif-
ferent SME coefficients control the behavior of light. A
given point source at a fixed sky location can therefore
access only a limited number of coefficient combinations.
Consequently, multiple sources at different sky locations
are required to constrain fully the coefficient space.

Two major features, dispersion and birefringence, can
be exploited to search for Lorentz violation in radiation
from sources at cosmological distances. Dispersion is a
characteristic of all SME operators with d 6= 4. Arrival-
time differences in high-energy photons from sources such
as GRB can be used to constrain the energy dependence
in the group velocity. The SME framework shows that
dispersion for operators with odd d is necessarily accom-
panied by birefringence, implying different speeds for the
two normal modes. As a result, a wave packet not only
disperses but gradually splits into two. Only the CPT-
even operators with even d characterized by the coeffi-

cients c
(d)
(I)jm give dispersion without birefringence. GRB

constraints on Lorentz-violating dispersion for even di-
mensions d have been obtained for d = 6 and 8 [10–13].

Birefringence studies of astrophysical sources such as
GRB offer extreme sensitivity to Lorentz and CPT viola-
tion. The primary signature of birefringence is a change
in photon polarization due to propagation. This is gov-
erned by the phase difference of the eigenmodes devel-
oped during propagation, which increases with energy.
While dispersion can uniquely constrain the coefficients

c
(d)
(I)jm, for d ≥ 4 birefringence at GRB energies typically

offers many orders of magnitude better sensitivity to the

coefficients k
(d)
(E)jm, k

(d)
(B)jm, k

(d)
(V )jm because a comparable

dispersion test would require a time resolution compara-
ble to the tiny inverse photon frequency.

In one study, evidence for polarization at the level
of Π > 35% in GRB 930131 and Π > 50% in GRB
960924 was extracted from data obtained by the Burst
and Transient Source Experiment (BATSE) [14]. These
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z energy (θ, φ)

GRB 930131 0.1 [15] 31 – 98 keV [14] (98◦, 182◦) [19]

GRB 960924 0.1 [15] 31 – 98 keV [14] (87◦, 37◦) [19]

GRB 041219A 0.02 [17] 100– 1000 keV [4] (27◦, 6◦) [20]

GRB 100826A 0.71 [18] 70 – 300 keV [5] (112◦, 279◦) [21]

GRB 110301A 0.21 [18] 70 – 300 keV [6] (61◦, 229◦) [22]

GRB 110721A 0.45 [18] 70 – 300 keV [6] (129◦, 333◦) [23]

TABLE I: GRB for which strong evidence of linear polar-
ization exists. The second column gives the estimated lower
limit on the red shift. The third column is the energy range
in which polarization is observed. The last column gives the
GRB codeclination θ and right ascension φ. The first two
GRB were previously studied [10, 15], while the others are
the subject of the present work.

results have been used to constrain Lorentz violation
for d = 4, 5, 6, 7, 8, 9 [10, 15]. Polarization as high as
Π = 96+39

−40% was identified in GRB 041219A using in-
struments aboard the International Gamma-Ray Astro-
physics Laboratory (INTEGRAL) [4]. This result was
used by Stecker to place bounds on d = 5 coefficients
on the order of 10−34 GeV−1 [16]. Another INTEGRAL
analysis found similarly high degrees of polarization in
GRB 041219A, placing bounds on the single isotropic
d = 5 coefficient [17]. A recent analysis using polarization
data for GRB 100826A (> 6%), GRB 110301A (> 31%),
and GRB 110721A (> 35%) from the Gamma-ray Burst
Polarimeter (GAP) on the Interplanetary Kite-craft Ac-
celerated by Radiation of the Sun (IKAROS) [5, 6] also
bounded the single isotropic d = 5 coefficient [18]. The
basic features of all six GRB are summarized in Table I.
In this work, we use the polarization reported for the

four latest GRB to place improved bounds on direction-
dependent combinations of SME coefficients for d =
4, 5, 6, 7, 8, 9. For the analysis, it is useful to expand the
quantities ςa in energy E [10, 11],

ςa(E, θ, φ) =
∑

d

Ed−4 ς(d)a(θ, φ), (a = 0, 1, 2, 3), (2)

where ς(d)a(θ, φ) are direction-dependent combinations
of SME coefficients. The direction dependence can be
displayed explicitly by further expansion using conven-
tional spherical harmonics Yjm(θ, φ) for ς(d)0(θ, φ) and
ς(d)3(θ, φ),

ς(d)0(θ, φ) =
∑

jm

Yjm(θ, φ) c
(d)
(I)jm,

ς(d)3(θ, φ) =
∑

jm

Yjm(θ, φ) k
(d)
(V )jm, (3)

and their cousins ±2Yjm(θ, φ) of spin-weight two for the
combinations ς(d)± ≡ ς(d)1 ∓ iς(d)2,

ς(d)±(θ, φ) =
∑

jm

±2Yjm(θ, φ)
(

k
(d)
(E)jm ± ik

(d)
(B)jm

)

. (4)

coeff. CPT d j biref.

general c
(d)
(I)jm + 4, 6, 8, . . . 0, 1, . . . , d− 2

k
(d)
(E)jm + 4, 6, 8, . . . 2, 3, . . . , d− 2 X

k
(d)
(B)jm + 4, 6, 8, . . . 2, 3, . . . , d− 2 X

k
(d)

(V )jm
− 3, 5, 7, . . . 0, 1, . . . , d− 2 X

isotropic c
(d)
(I)00 + 4, 6, 8, . . . 0

k
(d)
(V )00 − 3, 5, 7, . . . 0 X

TABLE II: Index ranges and properties of coefficients for
Lorentz and CPT violation, where −j ≤ m ≤ j as usual.
The isotropic limit is shown in the last two lines.

The basic SME coefficients c
(d)
(I)jm, k

(d)
(E)jm, and k

(d)
(B)jm

characterize CPT-preserving Lorentz violation, while

k
(d)
(V )jm also controls CPT violation. Table II summarizes

some properties of these coefficients.
Table II also contains information about the isotropic

coefficients for which j = m = 0, which represent a pop-
ular restriction of the general framework. In this limit,
each value of d has exactly one SME coefficient, which is
nonbirefringent in the CPT-even case and birefringent in
the CPT-odd case. The theoretical motivation for this
restriction is open to doubt because isotropy can hold
only in a single inertial frame, which cannot be an Earth-
based frame and requires fine tuning to match the stan-
dard Sun-centered frame. However, the isotropic limit
does offer an order-of-magnitude measure of the reach
for a given source, and it also simplifies many equations.
For example, the general expression for the defect in the
group velocity relevant for dispersion studies can be writ-
ten δvgr = (d−3)Ed−4

(

−ς(d)0±
∣

∣ς(d)+
∣

∣

)

in the CPT-even

case and δvgr = ±(d − 3)Ed−4
∣

∣ς(d)3
∣

∣ in the CPT-odd
case, but in the isotropic limit one obtains instead the

simpler expressions δvgr = −(d − 3)Ed−4c
(d)
(I)00/

√
4π in

the CPT-even case and δvgr = ±(d− 3)Ed−4k
(d)
(V )00/

√
4π

in the CPT-odd case. Note that Table II reveals there
are no j = 0 isotropic coefficients k

(d)
(E)jm or k

(d)
(B)jm, so

the quantities ς(d)± are necessarily direction dependent.
During birefringent propagation of light, the difference

in phase speed between the two normal modes generates a
relative phase shift and a corresponding change in the net
polarization. This change can be visualized as a rotation
of the Stokes vector ~s = (s1, s2, s3) = (Q,U, V ) about a
rotation axis ~ς = (ς1, ς2, ς3) by an angle Φ equal to the to-
tal relative phase shift [24]. If ~s lies along ~ς, then the light
is in one of the two normal modes and the polarization
remains unchanged. Note that in the CPT-odd case the
two normal modes are circularly polarized, ~ς = (0, 0, ς3),
while in the CPT-even case they are linearly polarized,
~ς = (ς1, ς2, 0). Also, isotropic birefringence occurs only

in the CPT-odd case where ς3 = Ed−4k
(d)
(V )00/

√
4π and

for which d is odd, so changes in polarization for even d
necessarily depend on the source position.
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For given d, the rotation angle Φ depends on the dif-
ference in phase speed, ∆v = 2Ed−3|ς(d)a|, where a = 3
in the CPT-odd case and a = + in the CPT-even case. It
can be found by integrating the accumulated phase over
the propagation time, Φ =

∫

E∆v dt. Incorporating the
redshift gives

Φ = 2Ed−3L(d)
∣

∣ς(d)a(θ, φ)
∣

∣, a = (3,+), (5)

where L(d) =
∫ z

0 (1+z)
d−4H−1

z dz is the effective baseline
for dimension d in terms of the source redshift z and the
Hubble expansion rate Hz at redshift z.
For the CPT-odd case with a = 3, the Stokes vector

rotates about the s3 axis, shifting the linear polarization
angle ψ by δψ = Φ/2. A detailed analysis searching for
CPT violation could take advantage of the Ed−3 depen-
dence in Eq. (5). For example, assuming two photons of
energies E1 and E2 initially have the same polarization,
the difference ψ2 − ψ1 in their polarization angles after
traveling the effective baseline L(d) is given by

ψ2 − ψ1

(Ed−3
2 − Ed−3

1 )L(d)
=

∑

jm

Yjm(θ, φ) k
(d)
(V )jm. (6)

Using observations of GRB 041219A and assuming only
the single isotropic coefficient with d = 5 [25], a search of
this type was performed in Ref. [17], yielding the bound
∣

∣k
(5)
(V )00

∣

∣ < 3× 10−33 GeV−1.

An alternative approach offering conservative con-
straints is to seek a significant degree of linear polar-
ization within a given energy band. Differential ro-
tations within the band smear the polarization and
hence decrease the effective degree of linear polariza-
tion, Πeff =

√

〈s1〉2 + 〈s2〉2. In the CPT-odd case, this
smearing produces an upper bound in the measured po-
larization Π ≤

√

〈cosΦ〉2 + 〈sinΦ〉2, where the equality
holds for an initial 100% linear polarization at constant
angle. The polarization smearing will be nearly com-
plete unless the change in Φ over the energy band is
less than 2π. Under the assumption of only the sin-
gle isotropic coefficient with d = 5, a similar idea has
been applied to observations of GRB 100826A, GRB
110301A, and GRB 110721A [18], producing the bound
∣

∣k
(5)
(V )00

∣

∣ < 6× 10−34 GeV−1.

In the general case, for any given odd d and including
all coefficients for CPT violation, we obtain the conser-
vative limit

∣

∣

∣

∣

∑

jm

Yjm(θ, φ) k
(d)
(V )jm

∣

∣

∣

∣

<
π

∣

∣Ed−3
2 − Ed−3

1

∣

∣L(d)
, (7)

where E1 and E2 are the edges of the energy band. This
expression can be used to obtain substantially improved
sensitivities to CPT violation from GRB 041219A, GRB
100826A, GRB 110301A, and GRB 110721A. We con-
sider CPT-violating operators of dimensions d = 5, 7,

and 9, for which there are 16, 36, and 64 independent
vacuum coefficients, respectively [10]. Each source gen-
erates a new constraint on a different combination of co-
efficients, listed in Table III. For completeness, we also
list bounds in the isotropic limit.
The CPT-even case is more complicated because the

normal modes are linearly polarized, which implies lin-
early polarized light from a distant source produced near
one of the two polarizations ~s ≈ ±(ς1, ς2, 0) could prop-
agate essentially unchanged. Moreover, even if both
modes are involved, the change in polarization involves
more than a simple rotation of linear polarization. Light
that is initially linearly polarized, ~s = (s1, s2, 0), becomes
elliptically polarized as ~s rotates out of the s1-s2 plane
and in some cases may even become circularly polarized,
~s = (0, 0, s3).

For light not produced in a normal mode and initially
linearly polarized at angle ψ0, let Ψ = ψ0 − ψb be the
difference between ψ0 and the polarization angle ψb for
the faster of the two normal modes. As the Stokes vector
rotates about ~ς , it traces out a cone with opening an-
gle 4Ψ centered around ~ς . A calculation shows that the
difference ψ2 − ψ1 in linear polarization at two different
energies E1 and E2 satisfies

sin 2(ψ2 − ψ1) = sin 2Ψ cos 2Ψ(cos Φ2−cos Φ1)√
(1−sin2 2Ψ sin2 Φ1)(1−sin2 2Ψ sin2 Φ2)

,

cos 2(ψ2 − ψ1) = cos2 2Ψ+sin2 2Ψ cos Φ2 cosΦ1√
(1−sin2 2Ψ sin2 Φ1)(1−sin2 2Ψ sin2 Φ2)

.(8)

This result could be used to place constraints when the
observed difference ψ2 − ψ1 is small.
An alternative and simpler strategy is again provided

by considering the effective degree of linear polarization.
In the CPT-even case, the effective degree of linear polar-
ization is decreased both by polarization smearing and by
the conversion from linear to elliptical polarization. The
maximum effective degree of linear polarization is

Πeff =
√

1−
(

1− 〈cosΦ〉2
)

sin2 2Ψ . (9)

An observation of linear polarization Π then places a
lower limit on Πeff, which leads to the inequality 1−Π2 >
(1 − 〈cosΦ〉2) sin2 2Ψ. A single source therefore bounds
a region in coefficient space but cannot provide a strict
constraint, as its light could be propagating in a nor-
mal mode with Ψ = 0 or π/2. In principle, combining
the results of multiple sources at different sky locations
and having different polarizations would permit a com-
plete coverage of the CPT-even sector for each d, but at
present the number of sources is insufficient for this. The
above inequality can, however, be used to estimate the
maximum sensitivity to coefficients for Lorentz violation
achieved by a given source. The depletion in polariza-
tion is largest when the light is in an equal admixture of
the two normal modes, Ψ = ±π/4. The effective degree
of polarization then reduces to Πeff =

∣

∣〈cosΦ〉
∣

∣, which
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GRB 041219A GRB 100826A GRB 110301A GRB 110721A

(27◦, 6◦) (112◦, 279◦) (61◦, 229◦) (129◦, 333◦)
∣

∣

∑

jm Yjm(θ, φ) k
(5)

(V )jm

∣

∣ < 2× 10−34 GeV−1 < 7× 10−35 GeV−1 < 2× 10−34 GeV−1 < 1× 10−34 GeV−1

∣

∣

∑

jm
Yjm(θ, φ) k

(7)

(V )jm

∣

∣ < 2× 10−28 GeV−3 < 4× 10−28 GeV−3 < 2× 10−27 GeV−3 < 8× 10−28 GeV−3

∣

∣

∑

jm
Yjm(θ, φ) k

(9)
(V )jm

∣

∣ < 2× 10−22 GeV−5 < 2× 10−21 GeV−5 < 2× 10−20 GeV−5 < 5× 10−21 GeV−5

∣

∣k
(5)

(V )00

∣

∣ < 8× 10−34 GeV−1 < 2× 10−34 GeV−1 < 9× 10−34 GeV−1 < 4× 10−34 GeV−1

∣

∣k
(7)

(V )00

∣

∣ < 8× 10−28 GeV−3 < 1× 10−27 GeV−3 < 8× 10−27 GeV−3 < 3× 10−27 GeV−3

∣

∣k
(9)

(V )00

∣

∣ < 8× 10−22 GeV−5 < 7× 10−21 GeV−5 < 7× 10−20 GeV−5 < 2× 10−20 GeV−5

∣

∣

∑

jm 2Yjm(θ, φ)
(

k
(4)
(E)jm + ik

(4)
(B)jm

)∣

∣ . 10−37 . 10−38 . 10−38 . 10−38

∣

∣

∑

jm 2Yjm(θ, φ)
(

k
(6)
(E)jm + ik

(6)
(B)jm

)∣

∣ . 10−31 GeV−2 . 10−32 GeV−2 . 10−31 GeV−2 . 10−31 GeV−2

∣

∣

∑

jm 2Yjm(θ, φ)
(

k
(8)

(E)jm
+ ik

(8)

(B)jm

)∣

∣ . 10−25 GeV−4 . 10−25 GeV−4 . 10−24 GeV−4 . 10−24 GeV−4

TABLE III: New constraints on coefficients for Lorentz and CPT violation. The first three rows give constraints on general
coefficients for CPT-odd operators with d = 5, 7, 9. The next three rows display constraints within the isotropic limit. The final
three rows provide the approximate maximal sensitivity of each source to coefficients for CPT-even operators with d = 4, 6, 8.

vanishes for relative rotations greater than π across an
energy band. We can therefore estimate the maximal
sensitivity to the CPT-even coefficients as
∣

∣

∣

∣

∑

jm

2Yjm(θ, φ)
(

k
(d)
(E)jm+ik

(d)
(B)jm

)

∣

∣

∣

∣ ∼<
π

2
∣

∣Ed−3
2 − Ed−3

1

∣

∣L(d)
.

(10)
This result can be applied to the sources GRB 041219A,
GRB 100826A, GRB 110301A, and GRB 110721A. For
Lorentz-violating operators of dimensions d = 4, 6, and 8,
there are 10, 42, and 90 independent vacuum coefficients,
respectively [10]. Table III lists the resulting constraints
on a linear combination of these coefficients.
The results in Table III represent sensitivities improved

by factors of ten to a millionfold over existing bounds
on CPT-odd and CPT-even violations of Lorentz invari-
ance. Two thirds of the listed constraints involve pre-
viously unmeasured combinations of coefficients. Taken
together, the results place significant pressure on models
of Lorentz violation in photons. Direction dependence is
a necessary consequence of Lorentz violation because the
boost operators that generate Lorentz transformations
close under commutations into rotations. Every model
of Lorentz violation therefore must exhibit some type of
direction-dependent effect. Coefficients in models involv-
ing birefringent operators with d = 4 are constrained by
Table III to lie more than four orders of magnitude below
the size expected due to quadratic suppression by the ra-
tio ∼ 10−17 of the electroweak to Planck scales. Barring
fortuitous cancellations, all such models are excluded.
Models involving birefringent operators with d > 4 may
still be viable but must now contend with new and sub-
stantially improved constraints.
This work was supported in part by the Department
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