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Abstract

An asymptotic scaling theory is presented using the conceptual basis of trapping-free subspace

(i.e., orthogonal subspace) to establish the generic mechanism of optimal efficiency of excitation

energy transfer (EET) in light-harvesting systems. A quantum state orthogonal to the trap will

exhibit noise-assisted transfer, clarifying the significance of initial preparation. For such an initial

state, the efficiency is enhanced in the weak damping limit (〈t〉 ∼ 1/Γ), and suppressed in the strong

damping limit (〈t〉 ∼ Γ), analogous to Kramers’ turnover in classical rate theory. An interpolating

expression, 〈t〉 = A/Γ + B + CΓ, quantitatively describes the trapping time over the entire range

of the dissipation strength, and predicts the optimal efficiency at Γopt ∼ J . In the presence of

static disorder, the scaling law of transfer time with respect to dephasing rate changes from linear

to square root, suggesting a weaker dependence on the environment. The prediction of the scaling

theory is verified in a symmetric dendrimer system by numerically exact quantum calculations.

Though formulated in the context of EET, the analysis and conclusions apply in general to open

quantum processes, including electron transfer, fluorescence emission, and heat conduction.
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The optimization of the excitation energy transfer (EET) process presents a challenge

for understanding photosynthetic systems as well as for designing efficient solar energy de-

vices. Multi-dimensional spectra have allowed detailed probes of EET dynamics, revealing

signatures of quantum coherence [1–4]. In contrast to the common belief that noise retards

motion and coherence enhances mobility, the EET efficiency reaches the maximum at an

intermediate level of noise, leading to the notion of noise-enhanced energy transfer [5–10].

Fermi’s golden rule rate provides a simple interpretation and suggests that stochastic res-

onance between the donor and acceptor enhances EET efficiency [8–10]. Another possible

mechanism is that noise suppresses destructive interference between pathways [8, 9]. The

situation is further complicated by the findings that initial preparation, coherence of incident

photons, site energy, spatial correlation, static disorder, and various approximations invoked

in quantum master equations can all play a role in establishing optimal efficiency [10–15].

Therefore, a general mechanism for optimization in an arbitrary EET system accompanying

all these effects is clearly needed but has not yet been formulated. In this Letter, we utilize

the concept of trapping-free subspace (i.e., orthogonal subspace) to bring together all of the

above considerations into a unified framework, that allows us to establish asymptotic scaling

relations under both dynamic and static disorder and construct the generic functional form

of optimal EET efficiency.

Model. — We consider a light-harvesting EET system (see examples in Fig. 1) described

by the quantum equation of motion for the reduced density matrix of the single excitation

manifold [9], ρ̇(t) = −Lρ(t). Here, the Liouville superoperator L = Lsys + Ldissip + Ltrap +

Ldecay comprises four terms, each describing a distinct dynamic process: (i) Lsysρ(t) =

(i/~)[HS, ρ(t)], the dynamics of the isolated system, where HS is the system Hamiltonian;

(ii) Ldissip, the exciton re-distribution and dephasing within the single-excitation manifold;

(iii) Ltrap, the trapping of excitation energy at the reaction center; (iv) Ldecay, the decay of

the excitation energy to ground state in the form of heat or a photon. Each superoperator

can be represented by a matrix defined in the Liouville space. A basic property of an EET

system is its energy transfer efficiency, q = Tr
∫∞

0
Ltrapρ(t)dt, where Tr denotes the trace

over states. For an efficient EET system such as a light-harvesting protein complex, its

nearly unit efficiency, q ∼ 1, implies a clear time-scale separation between the decay and

trapping processes. Under this condition and with a homogeneous decay rate kd, the transfer

efficiency can be approximated by q ≈ (1 + kd〈t〉)−1, where 〈t〉 = Tr
[

L−1
0 ρ(0)

]

is the the
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average trapping time for the initial density matrix ρ(0), and L0 = Lsys + Ltrap + Ldissip is

the Liouville superoperator in the absence of decay [9].

a) c)

b)

Donor

Acceptor∆
J

FIG. 1: Various EET systems with the trapping free subspace: a) A donor-acceptor system with

a large energy mismatch (∆ ≫ J). b) A homogeneous N -site (N ≫ 1) chain. c) A two-generation

three-fold dendrimer [20].

The optimization of EET is simplified to the minimization of 〈t〉. For many EET systems,

〈t〉 decreases with increasing Γ for weak dissipation and diverges with Γ for strong dissipation,

where Γ represents a characteristic dissipation strength in Ldissp, e.g., the dephasing rate [5–

10]. A representative curve of this dependence is plotted in Fig. 2a, where the trapping

time 〈t〉 is minimal at an optimal noise level, Γopt. To understand this generic behavior, we

investigate the asymptotic scaling of 〈t〉 in the strong and weak dissipation limits.

Asymptotics of the trapping time. — In the strong damping limit (Γ ≫ 1), quantum

coherence is quickly destroyed by noise, and energy is transferred through incoherent hops.

The hopping rate khop can be estimated from Fermi’s golden rule, giving khop ∼ |J |2/Γ
for classical noise, with J the exciton coupling strength. Thus, the trapping time diverges

linearly with Γ, giving

〈t〉 ∼ k−1
hop ∼ Γ/|J |2. (1)

For a quantum bath, the Γ-dependence of khop becomes more complicated, exhibiting thermal

activation, but can follow the linear Γ function in Eq. (1) for relatively large values of

damping, as verified by the computational results of the hierarchy equation for a dendrimer

system in this Letter.
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In the opposite limit of weak damping (Γ → 0), energy transfer can be enhanced by

dynamic noise such that 〈t〉 decreases with increasing Γ. Here the starting point for EET

dynamics is the delocalized exciton basis, i.e., eigenstates of HS. Following the secular

approximation, 〈t〉 is dominated by the dynamics within the exciton population subspace,

〈t〉 ≈ Tr
[

(

LE
dissip;P + LE

trap;P

)−1
ρEP (0)

]

, where the superscript E denotes the exciton repre-

sentation and the subscript P denotes the population subspace. However, a set of excitons,

Φ⊥ = {|Ei〉}, orthogonal to the trapping operator, LE
trap;ii = 0, are incapable of efficient

energy transfer and define a trapping-free subspace Φ⊥. Generally, the zero determinant for

the trapping block matrix,

Det
[

LE
trap;P

]

= 0, (2)

leads to the divergence of the coherent trapping time, < t > |Γ=0 = ∞. The definition of the

trapping-free subspace is a generalization of the invariant subspace [8] and is closely related

to the concept of decoherence-free subspace in quantum information [16]. The system-bath

coupling induces interactions between the trapping-free and other exciton states, resulting

in population depletion from Φ⊥. Thus, dissipation of Φ⊥ dominates the average trapping

time. For nonzero population in Φ⊥, the leading order of 〈t〉 is given by the survival time

in the orthogonal exciton subspace,

〈t〉 ≈
∑

i∈Φ⊥

(LE
dissip;ii)

−1ρEi (0)/Γ, (3)

where LE
dissp = LE

dissip/Γ is the rescaled Liouville superoperator in the exciton representation,

independent of Γ for Γ → 0. In many EET systems, the orthogonal condition in Eq. (2)

may not be rigorously satisfied, then 〈t〉 does not completely diverge in the coherent limit.

In general, the trapping time for weak dissipation can be expanded as

〈t〉 ∼ c0 + c1/(Γ + Γ1) + c2/(Γ + Γ2) + · · · , (4)

where {Γ1,Γ2, · · ·} is independent of the initial condition, but {c0, c1, c2, · · ·} depends on

the initial condition. Equation (4) recovers the asymptotic 1/Γ-scaling in Eq. (3) under the

condition of Γk(≥1) → 0.

Generality. — The two scaling relations in the asymptotic regimes are based on general

physical arguments and independent of specific details such as the system-bath coupling,
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bath spectral density, truncation method, and approximations in the quantum master equa-

tion. Combining Equations (1) and (3), we can show that the optimal condition,

Γopt ∼
{

∑

i∈Φ⊥

(LE
dissip;ii)

−1ρEi (0)

}1/2

|J | ∝ |J |, (5)

depends on the system Hamiltonian as well as the initial condition. The general Γ-

dependence follows the interpolating functional form,

〈t〉 = A/Γ +B + CΓ, (6)

where A, B, C are fitting coefficients. In fact, the optimal efficiency is analogous to the

Kramers turnover in reaction rate theory, where the two scaling regimes correspond to energy

diffusion and spatial diffusion, respectively [17, 18]. The change of the reaction coordinate

from energy to spatial position in classical rate theory corresponds to the change of basis

set from excitons to local sites in energy transfer theory. However, the analogy to classical

rate theory is limited to the orthogonal subspace and does not apply to the non-orthogonal

subspace, where coherent energy transfer does not display a turnover.

The trapping-free subspace defined in Eqs. (2) can be realized in various systems. (i) In

an inhomogeneous system with large energy mismatches (see Fig. 1a), the orthogonality can

arise from a vanishingly small overlap between the donor and acceptor. This situation can

be well described by Fermi’s golden rule and qualitatively explains the optimal efficiency in

FMO [10, 19]. (ii) In a spatially extended system, the orthogonality can arise because the

overlap coefficient of a local site with the trap decreases with the system size, e.g., a long,

homogeneous chain system (see Fig. 1b). (iii) In a system with intrinsic symmetry, a subset

of excitons are incompatible with the symmetry of Ltrap, thus leading to orthogonality. The

fully-connected network [8] and the dendrimer in Fig. 1c are examples of such topological

symmetry. The orthogonality due to symmetry in case (iii) is rigorous, whereas the orthog-

onality in cases (i) and (ii) is approximate. In cases (i) and (ii), 〈t〉 does not diverge at

Γ = 0 but can still lead to an optimal efficiency because of approximate orthogonality. On

the other hand, if the initial state is specially prepared to be orthogonal to the trapping-free

subspace, i.e., ρ⊥ = 0 in Eq. (3) or ck(≥1) = 0 in Eq. (4), the 1/Γ-scaling disappears and 〈t〉 is
almost a constant minimum in the weak damping limit. Such a change in the Γ-dependence

of 〈t〉 is observed in the N -site homogeneous chain as the initial state moves along the chain.
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FIG. 2: EET of the dendrimer (Fig. 1c) using the HSR model. a) The trapping time 〈t〉 vs. the

pure dephasing rate Γ. For the first initial condition with ρ⊥ 6= 0 (see text), the solid, dashed, and

dashed-dotted-dotted lines are the full calculation, from Eq. (1), and from Eq. (3), respectively.

The dashed-dotted line is the result for the second initial condition with ρ⊥ = 0 (see text). b) The

functional form in Eq. (6) (dashed lines) quantitatively fits numerical results of 〈t〉 (solid lines) for

different site-site couplings, J=10, 20, 50 meV (from top to bottom). c) The optimal Γ is a linear

function of the site-site coupling J . d) The transfer efficiency q vs. Γ for the first initial condition.

The dashed line is the exact result while the solid line is from the approximation using 〈t〉 [23].

An example — To verify the above analysis, we investigate a two-generation three-fold

dendrimer depicted in Fig. 1c [20]. A tight-bonding model is used for the system Hamilto-

nian, giving HS;ij = εiδij |i〉〈i|+Jij(1− δij)|i〉〈j|, where |i〉 represents a localized state at site

i. All the site energies εi are identical and the site-site interaction Jij = 20 meV are con-

stant for all pairs of connected sites. The center site is the trap site with rate kt = 5 meV.

The decay process is characterized by a homogeneous rate kd = 5 µeV. We approximate
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dissipation by the Haken-Strobl-Reineker (HSR) model [21, 22] and consider homogeneous

pure dephasing, Ldissip;ij = (1− δi,j)Γ, where Γ is the pure dephasing rate. The orthogonal

subspace of this dendrimer system consists of seven exciton states. We compare two different

cases of initial preparation. In the first case, an incoherent population is evenly distributed

at six outer sites with ρ⊥(0) 6= 0. The trapping time is plotted as a function of Γ in Fig. 2a.

The divergence of 〈t〉 in the strong and weak dephasing limits agrees excellently with the

asymptotic behaviors predicted in Eqs. (1) and (3), respectively. Furthermore, Eq. (6) can

quantitatively describe the cross-over and fit the trapping time for the complete range of

Γ. The resulting Γopt in Fig. 2c is proportional to J , in agreement with Eq. (5). Figure 2d

shows that our approximate equation using 〈t〉 provides a quantitatively accurate descrip-

tion for the EET efficiency [23]. In the second case, a coherent state is evenly distributed

at the six outer sites with ρ⊥(0) = 0. The trapping time does not diverge since no initial

population exists in Φ⊥. Above a threshold at the intermediate dephasing rate, 〈t〉 changes
from a plateau to the same linearly increasing function of Γ. This calculation confirms that

dynamic noise can enhance the EET only if components of the initial state are orthogonal

to the trapping process.

Static disorder. — We introduce an energy disorder δεi at each site i, that follows

the Gaussian distribution, P (δεi) = exp[−(δε2i /(2σ
2
i ))]/

√
2πσi, where σi is the variance

of disorder. The resulting ensemble average is given by 〈x〉σ = Πi

∫

x(δεi)P (δεi)dδεi with

x = 〈t〉 or q. With the first initial condition, we present the results of 〈〈t〉〉σ and 〈q〉σ obtained
from a Monte Carlo simulation of 105 samples. As shown in Fig. 3a, static disorder is

irrelevant in the strong dephasing limit (Γ ≫ σ). In the weak dephasing limit (Γ ≪ σ ≪ J),

static disorder can destroy the orthogonality in Eq. (2) and induce a large reduction of

the trapping time. However, if the random energy disorder falls below σ′ (∼
√
Γ), the

weak orthogonality is preserved and 〈t〉 diverges. The new asymptotic relation in the weak

dephasing limit is given by an integral over these small disorders,

〈〈t〉〉σ ∼
∫ σ′

−σ′

dδεP (δε) 〈t〉||δε|<σ′ ∼ c

σ
√
Γ
, (7)

where δε describes the effective in-phase energy fluctuation over all the sites, P (δε) ∼ 1/σ

is the probability distribution, and 〈t〉||δε|<σ′ ≈ 〈t〉|δε=0 ∼ 1/Γ is approximately uniform

within this regime. The pre-factor c depends on ρ(0), HS and kt. To confirm the asymptotic

relation in Eq. (7), we calculate the weak-dephasing 〈〈t〉〉σ as a function of σ for different
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⊥

Γ1

FIG. 3: a)-b) The ensemble-averaged EET of the dendrimer (Fig. 1c) in the HSR model with

a static disorder σ = 4 meV. a) The solid line is the simulation result of 〈〈t〉〉σ , referenced by

the dotted line without σ from Fig. 2a. The dashed line is from Φ⊥, and the dashed-dotted line

is the fitting result of 1/
√
Γ. b) 〈q〉σ vs. Γ: the solid line is the ensemble average from the

original definition whereas the dashed line is from the approximation using 〈〈t〉〉σ [23]. c) The

weak-dephasing σ-dependence of 〈〈t〉〉σ , with Γ = 10−12, 10−11, 10−10, 10−9, 10−8 meV (from top to

bottom). Symbols denote simulation results, whereas the solid lines are fitted with 〈〈t〉〉σ = c′/σ.

d) The fitting coefficient c′ (circles) can be further fitted by c′ = c/
√
Γ (the solid line).

values of Γ and rigorously establish the scaling relation predicted in Figs. 3c-d. Interestingly,

as shown in Fig. 3b, the zero dephasing efficiency 〈q|Γ=0〉σ is drastically enhanced from 0.2

to 0.8 with disorder σ = J/5. Our calculations suggest that nature can use both static and

dynamic disorders cooperatively to achieve efficient and robust energy transfer.

The Quantum Drude-Lorentz Bath. — In above calculation, the dissipation is modeled
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by the classical white noise, i.e., the HSR model. To further verify the predictions of our

scaling theory, we consider a quantum bath described by the Drude-Lorentz spectral density,

J(ω) = (2~/π)λωωD/(ω
2 + ω2

D), where λ is the reorganization energy and ωD is the Debye

frequency (ω−1
D = 50 fs). The room temperature T = 300 K is applied with the high-T

approximation, coth(βω/2) ≈ 2/βω. The quantum dissipative dynamics of the Drude-

Lorentz bath can be reliably calculated using the hierarchy equation of motion [24, 25]. In

Fig. 4, 〈t〉 is plotted as a function of λ, which represents the dissipation strength. The

results of the Drude-Lorentz bath follow our scaling theory and agree qualitatively with

the results of the HSR model in Figs. 2 and 3. For weak dissipation (λ ≪ 1 meV), the

trapping time under the first initial condition (ρ⊥ 6= 0) follows 1/λ scaling as predicted by

Eq. (3), and the λ-dependence changes to 1/
√
λ with the static disorder (σ = 1 meV) as

predicted by Eq. (7). Under the second initial state (ρ⊥ = 0), the noise-enhanced energy

transfer disappears and 〈t〉 weakly increases for λ < 0.1 meV. For strong dissipation (λ > 1

meV), all three 〈t〉-λ dependencies collapse into a single curve, indicating that classical

hopping kinetics is nearly independent of initial quantum coherence and static disorder.

After replacing Γ with λ, Eq. (6) can also quantitatively describe 〈t〉 over a broad range

of λ, i.e., the linear λ-scaling predicted by Eq. (1) is reliable in the intermediately strong

damping regime (1 meV < λ < 40 meV). With the change of the site-site coupling J , this

functional form remains applicable (see Fig. 4b), but the J-dependencies of the coefficients

A and C in Eq. (6) becomes more complicated than those in the HSR model. Consequently,

the optimal λ weakly deviates from the linear function of J but still numerically follows

λopt/meV ∼ (J/meV)1.41 for J ≤ 75 meV (see Fig. 4c). In the activation regime (λ > 40

meV), 〈t〉 gradually becomes an exponential function of λ due to the presence of energy

barrier. Therefore, our scaling theory is applicable to a non-Markovian quantum bath.

Conclusion. — In this Letter, we demonstrate that the generic mechanism of noise

enhanced EET is to assist energy flow out of the orthogonal exciton subspace, and the

competition between noise-enhanced EET in the weak dissipation regime and noise-induced

suppression in the strong dissipation regime leads to an optimal efficiency. We determine the

scaling relations of the average trapping time in these two regimes and use the asymptotic

relations to interpolate the efficiency over the entire parameter space and qualitatively pre-

dict the optimal noise. The presence of static disorder reduces the exponent of divergence

in the weak-dissipation limit and thus makes the EET process more robust against noise.
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FIG. 4: a) The trapping time 〈t〉 vs. the reorganization energy λ calculated by the hierarchy

equation, for the dendrimer (Fig. 1c) with J = 20 meV and a Drude-Lorentz bath. The circles are

from the first initial condition; the diamonds are from the second initial condition; the squares are

from the first initial condition with a static disorder σ = 1 meV. The 1/λ- and 1/
√
λ-scalings are

shown for the circles and squares, respectively. The solid line from Eq. (6) fits the numerical result

(circles). b) Equation (6) is used to fit 〈t〉 for J=10, 20, 50 meV (from top to bottom). c) The

optimal λ approximately follows λopt/meV = 8.4 × 10−3(J/meV)1.41 for J ≤ 75 meV.

Using the HSR model and the quantum Drude-Lorentz bath, we verify the predictions of

the scaling theory in an example dendrimer system. Especially, the numerically accurate

results using the hierarchy equation demonstrate the generality of our scaling theory. Our

analysis is not limited to EET but also applies in general to electron transfer, fluorescence

emission, heat conduction and other open quantum processes.
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