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Amorphous packings of frictionless, spherical particles are isostatic at jamming onset, with the
number of constraints (contacts) equal to the number of degrees of freedom. Their structural and
mechanical properties are controlled by the interparticle contact network. In contrast, amorphous
packings of frictional particles are typically hyperstatic at jamming onset. We perform extensive
numerical simulations in two dimensions of the geometrical asperity (GA) model for static friction,
to further investigate the role of isostaticity. In the GA model, interparticle forces are obtained
by summing up purely repulsive central forces between periodically spaced circular asperities on
contacting grains. We compare the packing fraction, contact number, mobilization distribution,
and vibrational density of states using the GA model to those generated using the Cundall-Strack
(CS) approach. We find that static packings of frictional disks obtained from the GA model are
mechanically stable and isostatic when we consider interactions between asperities on contacting
particles. The crossover in the structural and mechanical properties of static packings from fric-
tionless to frictional behavior as a function of the static friction coefficient coincides with a change
in the type of interparticle contacts and the disappearance of a peak in the density of vibrational
modes for the GA model. These results emphasize that mesoscale features of the model for static
friction play an important role in determining the properties of granular packings.

Recently, intense effort has been devoted to under-
standing the jamming transition of athermal frictionless
spheres with repulsive contact interactions [1–4]. How-
ever, physical models of granular media should include
static friction [5]. Experiments [6, 7] and simulations [8–
10] have shown that amorphous frictional sphere packings
can be obtained at jamming onset over a wide contact
number range d + 1 ≤ z ≤ 2d [3, 11, 12], where d is
the spatial dimension. In addition, a crossover from fric-
tionless random close packing φ ≃ φRCP and z ≃ 2d to
frictional random loose packing φ ≃ φRLP and z ≃ d+ 1
as the static friction coefficient µ increases above µ∗ ∼ 0.1
(0.01) in d = 2(3) [12]. Moreover, a large number Ns of
‘sliding’ contacts (with the tangential equal to the nor-
mal force times µ) exists for small µ, and Ns decreases
with increasing µ [12, 13]. When contact-counting ar-
guments account for sliding contacts, frictional packings
can be described as ‘isostatic’ with similar vibrational
properties to frictionless spheres’ [10].
In this Letter, we address several open questions: How

sensitive are the structural (dependent on particle posi-
tions) and mechanical properties (dependent on interpar-
ticle forces) of frictional packings to the friction model
employed? What determines the static friction coeffi-
cient µ∗ that marks the crossover from frictionless to fric-
tional behavior for static packings? How does D(ω) for
frictional packings differ from ones of frictionless parti-
cles with complex and anisotropic (e.g. convex and non-
convex) shapes?
Most prior studies focused on the CS approach [14],

where static friction is modeled by a tangential spring
(with spring constant kt and restoring force ktut, where

ut is the relative tangential displacement) when parti-
cles in contact, and the Coulomb sliding condition holds.
With the GA model we can distinguish interparticle con-
tacts based on which asperities interact and calculate
D(ω) by taking derivatives of total potential energy with-
out making ad hoc assumptions on sliding contacts [10].
Prior GA models mimicking frictional interactions [15–
17] studied dense granular flows.

Static GA packings are mechanically stable (MS) and
isostatic when asperity interactions are considered, inde-
pendent of the effective static friction coefficient. The
crossover as a function of the effective friction coefficient
coincides with changes in the interaction types between
asperities and the disappearance of a strong, primarily
rotational, peak in D(ω) at low frequency. We also find
that D(ω) for the GA model differs from analogous stud-
ies for the CS case [10].

We construct MS packings of N rough bidisperse disks
(50 − 50 by number with diameter ratio r = 1.4) in
d = 2 using the GA model and compare them to those
from the CS approach. The lower right panel of Fig. 1
shows rough circular disks in the GA model, character-
ized by Na circular asperities with centers on the disk
rim and ratio of the asperity to particle radius Ra/R.
We consider two disk interactions: 1) asperities on disks
i and j and 2) the core of i with an asperity on j.
All interactions are purely repulsive linear springs [3].
Asperities a and a′ on disks i and j interact through
V aa′

ij = ǫ/(2σ2
ij)(σ

aa′

ij − raa
′

ij )2Θ(1 − raa
′

ij /σaa′

ij ), where

raa
′

ij is the center-to-center separation between asperities,

σaa′

ij = Ra
i + Ra′

j and σij = σaa′

ij + Ri + Rj . We locate
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FIG. 1: Top: Nearly identical MS packings of N = 6 bidis-
perse disks at jamming onset from the CS (left) and GA
(right) models with µ, µeff ≃ 0.3 and φJ ≃ 0.78 and 0.76,
respectively; they possess the same 9 interparticle contacts,
and the GA model has the isostatic number of contacting as-
perities Naa

c = 3N − 1 = 17. (right) The central particle
has five interactions between asperities on three contacting
grains. The solid and striped gray contacts between the cen-
tral particle and its neighbors are single and double asperity
contacts, respectively. Bottom: (left) Schematic of the ratio
of tangential and normal forces ft/fn at constant interparticle
overlap versus the relative tangential displacement ut for the
CS (dashed) and GA (solid) models. For CS, ft/fn is linear

with slope kt, while for GA ft/fn = ut/
√

(σaa′

ij − raa
′

ij )2 − u2
t ,

where raa
′

ij is constant at fixed overlap. Single (double) as-
perity contacts occur near ft/fn = 0 (maximal |ft|/fn).
Sliding happens when ±ua = ±µfn/kt in CS, while in GA

ua = ±σaa′

ij /(2
√

1 + 1/µ2

eff
) and ft/fn is periodic at zero over-

lap. (right) Schematic of the interaction in the GA model be-
tween disks with radius R, Na circular asperities with radius
Ra, and angle 2π/Na.

asperity a on the rim of disk i at angle θai = θi +
2πa
Na

and coordinates r
a
i = ri + Ri(cos θ

a
i , sin θ

a
i ), where ri is

the position of disk i. Asperity a on disk i and core of j
interact through V a

ij = ǫ/(2σ2
ij)(σ

a
ij − raij)

2Θ(1− raij/σ
a
ij),

where σa
ij = Ra

i + Ri + Rj (where raij is the sepa-
ration between the center of asperity a on i and the
center of j). The total GA potential energy is V =
∑

i>j

∑

a>a′ V aa′

ij +
∑

i>j

∑

a V
a
ij .

We can define an effective GA static friction coeffi-

cient, µeff = 1/

√

((2Ra/R)/ sin(π/Na))
2
− 1, the maxi-

mum tangential to normal interparticle force ratio, when
an asperity on disk i fits in between two j’s asperities as
in the lower right panel of Fig. 1. This is the maximum
tangential to normal force ratio in the zero interparticle
overlap limit. The ratio of the number of asperities on
the large and small particles is set close to r so that the
inter-species µeff is approximately the same as the intra-
particle one. The CS [4, 12] static friction is included
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FIG. 2: Top: Average packing fraction 〈φJ〉 for MS packings
from the CS and GA models versus µ or µeff . The lower left
inset shows 〈φJ 〉 versus µ or µeff for several system sizes N and
asperity numbers Na. Legends show Na(left) and N(right),
and axes without tick labels are the same as in the main panel.
Bottom: Average interparticle contact number 〈zpp〉 versus µ
or µeff . The insets show the N and Na dependence of 〈zpp〉
(lower left) and rattler particle fraction Nr/N (upper right).

between geometrically smooth circular disks i and j us-
ing a tangential spring with tangential to normal spring
constant ratio kt/kn = 1/3 (kn = ǫ/σij) [5], and |ft|
remains maximum µfn when ut exceeds the Coulomb
threshold. We studied system sizes from N = 6 to 96,
asperity numbers Na = 8, 16, and 32, and µ, µeff = 10−3

to 10.

We generate approximately 105 MS GA and CS pack-
ings at jamming onset, for eachN and µ or µeff , using the
compressive-quench-from-zero-density simulation proto-
col [18]. We randomly place point-particles in a square
periodic cell of unit size. We increase particle radii in
small steps corresponding to ∆φ = 10−4. After each
∆φ increment, the system is relaxed to the nearest local
potential energy minimum using dissipative forces pro-
portional to the disks’ translational and angular veloci-
ties with large damping coefficients. If after minimiza-
tion we have zero total potential energy per particle (i.e.
V/N < Vtol/ǫ = 10−14), we keep compressing the system.
Otherwise, if V/N ≥ Vtol/ǫ we decompress. ∆φ is halved
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FIG. 3: Cumulative mobilization distributions for N = 48
for the CS (left) and GA (right) models for µ, µeff = 10−3,
10−1, 1, and 10, where the mobilization ζ = |ft|/(µfn). GA
mobilities ζ > 1 can occur due to finite interparticle overlaps.
The bin at ζ = 1 includes all ζ ≥ 1 to allow a comparison
with the CS model.

µ or µeff
0

1

Pc

10-3 10-2 10-1 100 101

µeff

0.96

1

1.04

((
N

a
a

c
+
1)
/3

+
N

r
)/
N

FIG. 4: Top: Probability Pc of different contact types ver-
sus µ or µeff . Contacts can be single (rightward triangles)
and double asperity (leftward triangles) or low (squares)
and high mobilization (pentagons) with ζ < ζc = 0.5 and
ζ ≥ ζc, respectively for GA (solid red) and CS models
(blue dashed). Bottom: The average isostaticity parameter
〈α〉 = 〈((Naa

c + 1)/3 + Nr)/N〉, where Naa
c the total asper-

ity contacts, versus µeff for several N and Na. (N = 6 and
Na = 16, circles; 6 and 32, squares; 12 and 16, rightward
triangles; 12 and 32, leftward triangles; 24 and 16, upward
triangles; 24 and 32, downward triangles; 48 and 16, stars; 48
and 32, hexagons.) α = 1 indicates an isostatic number of
asperity contacts.

each time we switch from compression to decompression
or vice versa. We stop when Vtol < V/N < 1.01Vtol, and
the average particle overlap is less than 10−7. All GA
packings are mechanically stable with 3N ′−2 eigenvalues

mi > 0 for the dynamical matrix Mkl =
d2V

dRkdRl

, where
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FIG. 5: D(ω) for N = 48, Na = 16 and 32, and µeff = 10−3,
10−1, 1, and 100.5 for the GA model. The area under D(ω)
for µeff > 0 is the number of nonzero modes 3N ′ − 2, while
for µeff = 0 is 2N ′ − 2. The upper-left inset shows Õ(ω) after
simple shear (rightward triangles) and compression (leftward
triangles) perturbations at high and low friction (different col-
ors in main legend). Vertical solid lines indicate corresponding
locations of the D(ω) peak. Lower-left inset shows R/T for
the modes on a linear frequency scale. The upper right inset
tracks ωmax and D(ωmax) for the low-frequency peak in D(ω)
versus µeff for Na = 32. Solid lines have slopes −1 and 1.

R = {r1, . . . , rN ′ , (R1 + Ra
1)θ1, . . . , (RN ′ + Ra

N ′)θN ′},
N ′ = N − Nr, and Nr the rattler particles. (CS and
GA rattler particles have less than three interparticle
contacts) Fig. 2 shows results for the average packing
fraction 〈φJ 〉 and contact number 〈zpp〉 = 〈2Npp/(N

′)〉
at jamming onset, where Npp the particle-particle con-
tacts irrespective of the number of asperity contacts. As
previously [12], 〈φJ 〉 varies from ≈ 0.84 to 0.75 and 〈zpp〉
ranges from ≈ 4 to 3 as µ increases for both CS and GA
models. The crossover from frictionless to frictional be-
havior occurs near µ∗ ≈ 0.1. 〈φJ 〉 is 1% larger at large
µeff for the GA model, expected for finite Na. The upper
right panel of Fig. 2 shows Nr/N versus µ or µeff . Both
increase with µ or µeff and then plateau. Due to slow
relaxation processes we detect fewer rattlers for the GA
model, causing 〈zpp〉 to be 5% larger at large µeff .
The cumulative mobilization distributions (A(ζ) =

∫ ζ

0
P (x)dx, where ζ = |ft|/(µfn)) are qualitatively simi-

lar for the CS and GA models in Fig. 3. At low µ or µeff ,
A(ζ) for both models has a strong peak at ζ = 1 [9, 13].
As µ or µeff increases, it disappears and the average mo-
bilization decreases. Quantitative differences in the mo-
bilization distributions are due to the different tangen-
tial force laws shown in the lower left panel of Fig. 1.
At fixed overlap, ft/fn varies linearly with ut until the
sliding limit at ±ua, while ft/fn is periodic for the GA
model.
In the lower panel of Fig. 4, we show the asperity con-

tacts (single, double, and triple) for each interparticle
contact. We find that MS packings are isostatic [19] with
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Naa
c = 3N ′ − 1 contacts over the entire range of µeff .

Deviations from isostaticity are less than 2% for all N
and Na studied. In contrast, static packings of frictional
particles are hyperstatic (zpp > 3) when considering in-
terparticle contacts for both GA and CS [4] (cf. lower
panel of Fig. 2).
Asperity contacts may explain the structural and me-

chanical crossover near µ∗. In the top panel of Fig. 4, we
plot the probability of single and double asperity contacts
versus µeff . They are roughly equiprobable at low fric-
tion, while only double asperity contacts occur at high
friction. To maintain isostaticity, at low friction there
are typically two double and two single asperity contacts
per particle, while at high friction three double contacts
form for a total of approximately six per particle in both
cases. The µeff where single become less probable than
double asperity contacts (∼ 0.1) coincides with µ∗ above
which the packing fraction, contact number, and mobi-
lization distributions begin to deviate significantly from
frictionless behavior. Such competition also occurs for
the CS model. In the upper panel of Fig. 4, we show the
probability of low (ζ < ζc = 0.5) and high (ζ ≥ ζc) mo-
bilization contacts versus µ. (The results do not depend
strongly on ζc.) At low friction, most contacts possess
high mobilization, while they have low mobilization at
high friction. At high friction, double asperity contacts
resemble low mobilization contacts. At low friction, both
single and double asperity contacts can possess high mo-
bilization. The crossover in the probabilities of low and
high mobilization contacts occurs also near µ∗.
We can directly calculate the GA D(ω) from

the total potential energy (in the harmonic approx-
imation). The eigenmode with frequency ωj is

m̂j = {mx,1
j ,my,1

j ,mθ,1
j , . . . ,mx,N ′

j ,my,N ′

j ,mθ,N ′

j } with
∑

λ,i(m
λ,i
j )2 = 1. The rotational Rj and translational Tj

content of each mode j are Tj =
∑

i=1,N ′

∑

λ=x,y(m
λi
j )2,

and Rj = 1 − Tj; the participation ratio Pj =

(
∑

λ,i(m
λ,i
j )2)2/(N

∑

λ,i(m
λ,i
j )4) for λ = x, y and θ

separately, and the optical order parameter Qopt
j =

∑

i,k m
θ,i
j mθ,k

j /(N
∑

i(m
θ,i
j )2) that characterizes whether

the rotational content of j is co- or counter-rotating [10].
D(ω) for MS packings using the GA model is shown in

Fig. 5: (i) A strong peak at low frequency whose height
D(ωmax) increases and location ωmax shifts to lower fre-

quency with decreasing µeff . We find that ωmax ∼ µeff

and D(ωmax) ∼ µ−1
eff as µeff → 0 (cf. upper-right inset of

Fig. 5). These modes are mostly rotational (R ∼ 1), glob-
ally incoherent (Qopt ∼ 0), and quasi-localized (P . 0.1)
as µeff → 0. Similar peaks in D(ω) that contain low-
frequency rotational modes have been found in ellipse
packings [20, 21] at low aspect ratio. For small µeff , as
ω increases, D(ω) approaches the frictionless case with
translational and quasi-localized modes at high frequen-
cies. (ii) A peak in D(ω) at low frequency with R ∼ 1
disappears for µeff & µ∗. (iii) For µeff & µ∗, modes have
mixed rotational and translational content with R ∼ T
at all frequencies. At low frequencies, modes are “gear-
like” [22–24] (Qopt ∼ −0.5) and collective (P ∼ 0.3). At
high frequencies, modes are increasingly localized with
co-rotating angular components (Qopt ∼ 0.5).

Low-frequency rotational modes couple strongly to the
mechanical response of GA packings, shown by qua-
sistatic a) isotropic compression in packing fraction in-
crements to total ∆φtot = 10−8 or b) simple shear in
strain increments (coupled with Lees-Edwards bound-
ary conditions) to γtot = 10−8 from a reference con-
figuration at ∆φ0 = 10−6. We calculated the overlap
O(ω) = δD · m̂j(ω)/|δD|2 of the deformation vector
δD ≡ D − D0, where D0 (D) is the 3N ′-dimensional
coordinate vector of the reference configuration. In the
upper inset of Fig. 5, the low-frequency rotational modes
contribute to at least half of the cumulative and averaged
absolute overlap Õ(ω) =

∫ ω

0
|O(ω′)|dω′/

∫

∞

0
|O(ω′)|dω′

for both compression and shear.
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