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Recent studies of dynamic self-assembly in ferromagnetic colloids suspended in liquid-air or liquid-
liquid interfaces revealed a rich variety of dynamic structures ranging from linear snakes to axisym-
metric asters, which exhibit novel morphology of the magnetic ordering accompanied by large-scale
hydrodynamic flows. Based on controlled experiments and first principle theory, we argue that the
transition from snakes to asters is governed by the viscosity of the suspending liquid where less
viscous liquids favor snakes and more viscous, asters. By obtaining analytic solutions of the time-
averaged Navier-Stokes equations, we gain insights into the role of mean hydrodynamic flows and
an overall balance of forces governing the self-assembly. Our results illustrate that the viscosity can
be used to control the outcome of the dynamic self-assembly in magnetic colloidal suspensions.

PACS numbers: 87.19.ru, 81.16.Dn, 75.50.Tt

Fundamental principles guiding self-assembly in non-
equilibrium colloidal systems continues to attract enor-
mous attention in physics and engineering communities
[1–13]. The interest is stimulated by the need for creating
smart materials capable of self-assembly, adaptation, and
for the design of tunable structures that can perform use-
ful tasks at the microscale [14], including targeted cargo
delivery [15], stirring in microfluidic devices [16], and con-
trol of optical properties of the media [17].

Studies of dynamic self-assembly in ferromagnetic col-
loids dispersed at liquid-air interfaces [19, 20] and en-
ergized by an alternating (ac) magnetic field revealed
highly organized, dynamic linear structures – magnetic
snakes. The snake emerges spontaneously from a random
dispersion of particles in a certain range of frequencies
and amplitudes of the ac magnetic field. While for low
frequencies of the applied magnetic field the snakes are
immobile, with the increase in frequency they turn into
self-propelled entities [21]. Surprisingly, fundamentally
new structures – localized magnetic asters and arrays of
asters – emerge when the same colloidal suspension is
confined at the interface between two immiscible liquids
and is energized by the alternating magnetic field [22].

Both magnetic snakes and asters generate complex
flows in the fluid and possess magnetic ordering and dy-
namic organization highly unfavorable under equilibrium
conditions. While magnetic snakes are essentially lin-
ear and comprised of antiferromagnetically ordered seg-
ments of ferromagnetically ordered chains of micropar-
ticles [19], asters develop radial structural order with
the ferromagnetically ordered chains emanating from the
center of each aster [22]. The mean flows excited by
the snakes and asters have fundamentally different mor-
phology; snakes create quasi-two dimensional flows with
quadrupole symmetry confined near the surface [20] and
asters induce three-dimensional toroidal bulk flows [22].
The main forces that control dynamic self-assembly in

such systems involve not only magnetic dipole-dipole and
steric interactions between the particles but also non-
trivial hydrodynamic forces stemming from deformation
of the interface, viscous drag, and entrainment by the
large-scale mean flow. The striking difference between
self-assembled structures in liquid-air and liquid-liquid
systems remained unclear since both systems were driven
similarly. Thus, it is critical to understand the funda-
mental physical parameters controlling the transition be-
tween these two distinctive dynamic states.

In this Letter, we perform a systematic experimental
and theoretical study of the snake-aster transition. It is
widely believed that because the motion of each individ-
ual colloidal particle is strongly overdamped, the viscos-
ity sets only an overall time scale. Moreover, the motion
of fluid is often described by the linear Stokes equation,
as, e.g., in Ref. [23], and admits a one-way coupling be-
tween the solvent and the particles, when only the par-
ticle dynamics is influenced by the liquid flow but not
vice versa [24]. For our system, neither of these assump-
tions is met, presenting a great challenge for the theory.
However, on the basis of controlled experiments and com-
prehensive analysis of the first principle model, we have
demonstrated that the viscosity defines the intricate bal-
ance between magnetic forces and hydrodynamic forces
arising from the inertia of the particles and suspending
liquid. The magnitude of these forces is inversely pro-
portional to the viscosity, which can be independently
controlled both in our experiment and theoretical model.
We show that at a given frequency and amplitude of the
energizing ac magnetic field, the viscosity of a suspending
liquid controls the transition between snakes and asters;
snakes emerge for smaller viscosities, while asters are fa-
vored in more viscous liquids.

In our experiments with liquid-air systems, the struc-
tural transition from snakes to asters is consistently ob-
served when the viscosity of suspending liquid is grad-



2

ually increased. Our theoretical model, the fully non-
linear Navier-Stokes equations coupled to the dynamics
of individual magnetic particles, is reduced to a set of
closed, time-averaged ordinary differential equations for
particle positions and orientations interacting via mag-
netic forces and effective mean hydrodynamic forces aris-
ing due to oscillation of massive particles in a viscous
liquid. The cause of these mean forces are Stokes drift
and Rayleigh streaming. In contrast to the earlier study
based on direct simulation of the Navier-Stokes equations
[25], here we obtain their analytic solutions, which pro-
vide deep insight into the role of hydrodynamic flows,
their detailed structure, and an overall balance of forces
governing the self-assembly. The model is in good quali-
tative (and some times quantitative) agreement with the
experiments.
Our experimental apparatus was similar to that de-

scribed in Ref. [19]. A ferromagnetic colloidal suspension
was comprised of nickel microspheres with an average size
of 90µm (Alfa Aesar Company). Due to defects in par-
ticles, their magnetic moments are often strongly pinned
and the particles behave as magnetically “hard” micro-
spheres. The particles were dispersed at the liquid-air in-
terface, where they were supported by a surface tension.
To exclude the difference between the deep and shallow
liquid layers, a circular glass beaker (5 cm in diameter)
was filled with liquid depths of 5 cm and 5mm.
To vary the viscosity of the liquid, a range of water-

sucrose solutions was prepared [18]. The colloidal sus-
pension was energized by an ac magnetic field, Hac =
H0 sin(2πft), with the frequency f and amplitude H0 =
200Oe, applied perpendicular to the interface.
Selected experimental results are summarized in Fig. 1.

We observed the formation of magnetic snakes for values
of the dynamic viscosity of the suspending liquid, η, close
to the viscosity of water, η ≈ 1mPa s. With a gradual in-
crease in η, the snakes give way to asters, as illustrated in
Fig. 1, top panel. The transition is not sharp, it is asso-
ciated with a wide transition region, as indicated by the
error bars. Remarkably, the transition line is almost par-
allel to the η axis above the viscosity of η ≈ 1− 2mPa s.
The bottom panel of Fig. 1 shows a characteristic time,
Tf , for the formation of snake or aster as a function of η
for f = 40 Hz. After this time, the size of the developed
structure almost did not change, the change of its rela-
tive size was within 10%. Despite relatively large error
bars, Tf gradually increases with the growth of η.
To obtain insights into the snake-aster transition, we

significantly extend our model developed in Ref. [25]. We
start with the model based on the fully nonlinear Navier-
Stokes equation in the shallow water approximation,

∂th+∇ · (hv) = 0 , (1)

∂tv + (v · ∇)v = ν
(

∇2
v − αv

)

−∇h+ γ∇∇2h

+H0 sin(ωt)
∑

i

f (r− ri)Pi , (2)
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FIG. 1: Top panel : Snake-aster phase diagram as a function
of frequency, f , and viscosity, η. The amplitude of the ac
magnetic field is H0 = 200 Oe. Insets: Representative images
of a snake (top) and an aster (bottom). Bottom panel : Char-
acteristic time, Tf , for the formation of snakes (or asters) as
a function η for f = 40 Hz and H0 = 200 Oe. For two points
the vertical error bars are smaller than the markers.

where v is the two-dimensional (2D), in-plane fluid ve-
locity, h is the surface elevation, ν is the kinematic vis-
cosity, α is the friction with the bottom of the container,
and γ is the surface tension. The last term in Eq. (2)
is representative of forces applied to the surface of the
fluid through the particles, where H0 is the amplitude
of the ac magnetic field, ω is the frequency, the local-
ized function f defines the shape of the particle, and
Pi ≡ (cosφi, sinφi) is the orientation of the dipole mo-
ment of the ith particle. In our study, we neglect the
surface tension [26] and assume that f is given by delta
functions δ(r−ri), which does not affect the basic physics
of self-assembly but, more importantly, makes our model
analytically tractable. The variables are scaled as fol-
lows: coordinates r → r/h0, time t → t

√

h0/g, veloc-
ity v → v/

√
gh0, viscosity ν → ν/h0

√
gh0, where g is

gravitational acceleration. In this dimensionless, rescaled
equation, α = h0 = 1.
The motion of the particles on the surface of the fluid

is described using Newton’s equations

mr̈i + µtṙi = Fi + µtv − β∇h , (3)

Iφ̈i + µrφ̇i = Ti + κH0 sin(ωt)∇h×Pi , (4)

where m, I, µt, µr are the particle mass, moment of
inertia, translational and rotational friction coefficients,
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respectively; β = mg, Fi =
∑

j 6=i Fij and Ti =
∑

j 6=i Tij

are, respectively, the forces and torques on particle i due
to magnetic and steric interactions with all other parti-
cles, µtv is the Stokes’ drag and −β∇h is the movement
along the surface gradient from gravity. The last term in
Eq. (4) is the torque applied to each dipole moment in
the direction of the projection of the vertical ac field on
deformed surface [25].

In previous work, Eqs. (1)-(4) were solved numer-
ically to model snakes [25]. Here, we first analyti-
cally find solutions of Eqs. (1) and (2) in an asymp-
totic limit where we expand the surface deformation and
liquid velocity with respect to the small parameter ǫ,
h = h0+ ǫh1+ ǫ2h2+O

(

ǫ3
)

and v = ǫv1+ ǫ2v2+O
(

ǫ3
)

.
The parameter ǫ can be interpreted as the relative devi-
ation of the locus h(r, t) of the liquid-air interface from
the equilibrium value h0. Moreover, by using the dimen-
sionless viscosity ν as a small parameter, Eqs. (1) and
(2) were analytically solved up through the first order
for the corresponding surface deformation and 2D veloc-
ity fields induced by each particle individually to yield
h1(r, t) = hr(r)e

iωt + c.c. and v1(r, t) = vr(r)e
iωt + c.c.,

where c.c. denotes the complex conjugate. At the second
order, time-averaged solutions h2 and v2 were sought
and a corresponding analytic expression for v2, which
determines the mean flow, was obtained [27, 28].

Using the explicit solutions h1, h2, v1, and v2 of the
nonlinear Navier-Stokes equations, Eqs. (1) and (2), we
perform the time-averaging of Eqs. (3) and (4). As a
result, we arrive at a closed system of ordinary differential
equations for the particles in which all of the details of the
complex hydrodynamic flows are effectively encapsulated
in pairwise interactions

mr̈i + µtṙi =
∑

j 6=i

[

Fij + sj + µtv
(j)
2 − β∇h

(j)
2

]

,

(5)

Iφ̈i + µrφ̇i =
∑

j 6=i

[

Tij −
iκH0

2
∇(h(j)

r − h̄(j)
r )×Pi

]

.

(6)

Here, the overline denotes complex conjugate and sj =

−2m[β∇|∇h
(j)
r |2+µt{(v(j)

r ·∇)v̄
(j)
r +c.c.}]/(α2+m2ω2)

is the Stokes’ drift term. To obtain the Stokes drift of
each particle, we treated each term on the right-hand side
of Eq. (3) independently. The last term in Eq. (5) is of
much smaller order and can be neglected.

Thus, in contrast to the earlier model [25], where the
dynamics of the particles is determined by Eqs. (3) and
(4) coupled to nonlinear equations (1) and (2), we sug-
gest a much simpler and more transparent model in which
the particle positions and orientations are described by
Eqs. (5) and (6). Based on this model, we performed
simulations with different numbers of particles ranging
from 225 to 1000 [30], with an initial configuration on a
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FIG. 2: Mean surface flows (v2) and first-order surface defor-
mation (hr) induced by a single particle. Panels (a) and (b):
Quadrupole streamlines produced by the potential (a) and ro-
tational (b) components of the mean flow, v2. The magnitude
of the velocity v2 decays as r−3. Panel (c): Composite of the
potential and rotational flows. Panel (d): First-order surface
deformation hr, which decays exponentially with r. The color
in the image indicates the height.

perturbed square lattice with a uniformly random orien-
tation of the dipole moment and run on a GPU cluster. In
addition to a significant reduction of computation time,
roughly an order of magnitude speed up, the great advan-
tage of our approach is gaining insight into the surface
flows as the central ingredient underlying self-assembly.

The overall analytic behavior of the mean surface flows,
shown in Fig. 2, is similar to the large-scale quadrupolar
flow seen from experiment. These flows are analogous
to the mean flow produced by Rayleigh streaming [29].
The first-order flows (v1) are time dependent, dipolar
flows that oscillate in space and decay out exponentially,
vr(r) ∝ exp(−ikr)/

√
r, with k ≈ ω − iνk1, k1 = (ω2 +

α)/2; the behavior of hr(r) with r is similar to that of
vr(r), see Fig. 2(d). The second-order mean flow, v2, is
time independent and is decomposed into the potential
and rotational components, as shown in Figs. 2(a) and
2(b), respectively. Both these counterparts have a long-
ranged quadrupolar structure with a monotonic power-
law decay ∝ r−3. The full mean flow is seen in Fig. 2(c).

Note that since the localized shape function was mod-
eled by the delta function, the velocities and surface de-
formations at all orders diverge at the center of each par-
ticle. These divergences, however, have no effect on the
system because each particle cannot influence itself and
for each pair of particles, a short-range steric repulsion
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prevents them from getting close enough to feel the di-
vergence. Earlier experimental data [20] showed that a
mean quadrupole flow was an essential ingredient for the
assembly of snakes. Our model elucidates why this find-
ing is true for both snakes and asters: Neither of these
structures can be reproduced in simulations via Eqs. (5)
and (6) unless the Stokes drift and the mean flow (i.e.,
the fields hr, vr, and v2) are properly determined.

A critical test of the model is to recover the crossover
in the behavior from snakes to asters that was seen ex-
perimentally as a function of the liquid viscosity, η, and
the field frequency, f . The model successfully does so for
a range of values of η and f , see Fig. 3, top panel, where
α = h0 = ρ = 1. In qualitative agreement with the ex-
periment, we observed snakes and asters formed for lower
and higher values of η, respectively. Moreover, the depen-
dence of time Tf for the formation of a dynamic structure
on η exhibits a trend similar to the experimental one, see
Fig. 3, bottom panel. Note that, in order to avoid depth
dependence, the axes in Fig. 3 remain in dimensionless
quantities. In the case where the viscosity was low and
the frequency was high, the simulations yielded a clump-
ing of particles primarily due to the lack of friction in the
system. Alternately, when the viscosity was high and the
frequency was low, the particles remained scattered due
to overdamping and a lack of alignment along the changes
in the surface height gradient.

Because the mean flow induced by each particle has
a long-range nature, it affects the dynamics of all other
particles, leading to a highly nontrivial self-organization
of the system. Figure 4 illustrates the formation of snakes
and asters from an initially disordered distribution of par-
ticles. The particles were dispersed uniformly inside a
rectangle (snakes) or square (asters) with their magnetic
moments oriented randomly. As Fig. 4 shows, asters and
snakes are formed after a short transient (Tf ), their orga-
nization, e.g., anti-ferromagnetic order, closely resembles
the experimental one. Starting from different initial con-
ditions, e.g., square for the case of snake, often resulted
in the formation of more than one snake or aster.
In conclusion, we have demonstrated that the viscosity

of the suspending liquid strongly affects the outcome of
dynamic self-assembly and controls the structural tran-
sition between self-assembled structures. Linear snakes
are favored for small viscosities and circular asters for
higher viscosities. Our novel model provides a nontriv-
ial insight into how the large-scale mean flow – a non-
linear effect caused by the strong coupling of oscillating
particles with the initially equilibrium liquid – becomes
a critical player that not only determines the shape and
organization of the emergent dynamic structures but also
keeps them stable. As we show, both inertia of the liq-
uid and inertia of the particles are at the heart of the
assembly process.
While we were able to reproduce the main observed

phenomenology, our method also has limitations. One
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FIG. 3: Top panel: Snake-aster phase diagram as a function
of the rescaled frequency and viscosity. Circles, triangles, and
stars are, respectively for asters, snakes, and a mixture of seg-
ments neither forming asters nor snakes. Inset : Comparison
of experimental data (circles) and prediction of the model
(solid lines) for h0 = 1.5 mm and h0 = 2 mm. Bottom panel:
Formation time, Tf , of a structure as a function of fluid vis-

cosity for f(g/h0)
−1/2 = 0.3.

shortfall is that, being a completely two-dimensional
model, the shallow water equations do not capture the
liquid jets into the bulk produced by asters [22]. However,
our model is capable of replicating the overall structure of
both snakes and asters. As snakes produce a largely 2D
flow, it was natural to expect that they can be recovered
from this model. Asters, however, produce a 3D toroidal
flow and their appearance in this model was not expected.
They form due to the propensity of the dipoles to align
along the surface gradient for large characteristic wave-
lengths, whereas entrainment by the large-scale toroidal
flow is important but less critical. Another reason for
the lack of a good quantitative agreement between the
experiment and model (such as in the inset of Fig. 3, top
panel) is due to the neglected surface tension. Along with
gravity, it presents another mechanism for surface wave
generation but makes the model analytically intractable.

The research was supported by the U.S. DOE, Office
of Basic Energy Sciences, Division of Materials Science
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FIG. 4: Top row: Snake formation. Panel (a): Particles
on a rectangular lattice with random orientation. Panel (b):
Magnetic moments align along the surface gradient. Colors
represent surface elevation h (red and blue show maxima and
minima, respectively), arrows indicate particle magnetic mo-
ments. Panel (c): Ferromagnetic chains are formed and are
anti-ferromagnetically aligned, creating a snake. Bottom row:
Formation of an aster. Panel (d): Particles on a square lat-
tice with random orientations. Panel (e): Magnetic moments
align along the surface gradient. Panel (f): Ferromagnetically
ordered chains are formed and an aster is assembled.
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