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Quantum anomalous Hall effect (QAHE) is a fundamental transport phenomenon in the field of
condensed-matter physics. Without external magnetic field, spontaneous magnetization combined
with spin-orbit coupling give rise to a quantized Hall conductivity. So far, a number of theoretical
proposals have been made to realize the QAHE, but all based on inorganic materials. Here, using
first-principles calculations, we predict a family of 2D organic topological insulators for realizing the
QAHE. Designed by assembling molecular building blocks of triphenyl-transition-metal compounds
into a hexagonal lattice, this new class of organic materials are shown to have a nonzero Chern
number and exhibit a gapless chiral edge state within the Dirac gap.

PACS numbers: 73.43.-f, 72.20.-i, 81.05.Fb, 72.80.Le

The quantum Hall effect refers to the quantized Hall
conductivity due to Landau quantization, as observed in
a 2D electron system [1]. The essential ingredient to
produce the quantum Hall effect is to break the time-
reversal symmetry, usually by applying an external mag-
netic field. An interesting alternative is to have the
internal magnetization coupled with spin-orbit coupling
(SOC) that can also break time-reversal symmetry with-
out magnetic field [2]. This is called quantum anoma-
lous Hall effect (QAHE), as first proposed by Haldane
[3]. Subsequently, some realistic materials were theoret-
ically proposed to realize the QAHE, such as mercury-
based quantum wells [4], graphene [5–7] and topological
insulators (TIs) [8]. In general, in a QAHE material, in-
ternal magnetism, such as the one induced by transition
metals, breaks the time-reversal symmetry and splits the
spin degenerated bands. In addition, the SOC opens a
global band gap, giving rise to a topologically nontriv-
ial insulating state characterized with the quantized Hall
conductivity.

Due to the difficulty in controlling magnetization and
SOC, the QAHE has yet to be observed experimentally
[9, 10]. So far, all the theoretical proposals for realizing
the QAHE are based on inorganic materials. It is fasci-
nating to note that many fundamental physical phenom-
ena in inorganic materials and devices have always found
their way to organic counterparts, such as the organic su-
perconductors [11], light-emitting diodes [12], solar cells
[13] and field-effect transistors [14]. Therefore, an inter-
esting question is whether the QAHE can be realized in
organic materials.

In this Letter, we demonstrate that QAHE can indeed
be realized in 2D organic TIs (OTIs) self-assembled from
triphenyl-transition-metal compounds, using triphenyl-
manganese (TMn) as a model system. Based on Chern
number and edge state calculations, we confirm the 2D
TMn lattice have nontrivial topological Dirac-gap states
and explain the physical origin of its QAHE due to both
the intrinsic SOC and strong magnetization provided by
Mn atoms.

Figure 1: (a) Top and (b) side view of the optimized 2D TMn
lattice structure. Rhombus shows the unit cell.

Our first-principles band structure and band topology
calculations were carried out in the framework of the
PBE-GGA functional using the VASP package [15]. All
self-consistent calculations were performed with a plane-
wave cutoff of 500 eV on a 7 × 7 × 1 Monkhorst-Pack
k-point mesh. Supercell with a vacuum layer more than
15 Å thick is used to ensure decoupling between neigh-
boring slabs. For structural relaxation, all the atoms are
allowed to relax until atomic forces are smaller than 0.01
eV/Å.

The TMn [Mn(C6H5)3] molecule consists of a Mn atom
bonded with three benzene rings with three-fold rota-
tional symmetry. When bridged with a Mn atom, they
may naturally form a 2D hexagonal lattice, as shown in
Fig. 1. There are two Mn atoms and three benzene
rings with a chemical formula of Mn2C18H12 in each unit
cell and the neighboring benzene rings are bridge-bonded
through the para-Mn atoms. The optimized 2D lattice is
buckled with the para-Mn atoms moving alternately up
and down out of the plane of benzene rings (see Fig. 1b).
In addition, each benzene rotates slightly along the Mn-
Mn axis in a clockwise manner. The equilibrium lattice
constant is found to be 10.7 Å with the Mn-Mn distance
and height difference being 6.45 Å and 1.86 Å, respec-
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tively.

Figure 2: (a) and (b) Band structures of the TMn lattice
without and with SOC, respectively. Red dashed lines and
blue solid lines denote spin-up and spin-down bands. (c) and
(d) Magnification of (a) and (b) around the Fermi level, re-
spectively.

First, we analyze the band structure of TMn lattice
purposely without SOC. The ground state of TMn lat-
tice is found ferromagnetic with a magnetic moment of
4 µB per unit cell, which is 0.18 eV lower than the anti-
ferromagnetic state. The 3d-shell of Mn is half filled, af-
ter providing three d electrons to bond with the C, each
Mn atom is left with two unpaired d electrons of the same
spin. The band structure of the ferromagnetic state is
shown in Fig. 2(a). Due to internal magnetization, the
spin-up (red dashed line) and spin-down (blue solid line)
bands are completely split away from each other, and
only the spin-down band is left around the Fermi level
(a half semimetal). Magnifying the bands around the
Fermi level, we can see a clear linear Dirac band, with
the Fermi level located exactly at the Dirac point (K
and K ′), as shown in Fig. 2(c). Similar spin-up Dirac
bands are below the Fermi level. Next, the SOC is in-
cluded, and the corresponding band structure is shown
in Fig. 2(b). Our magnetic anisotropy calculation shown
that the SOC ground state has the out-of-plane spin ori-
entation, which is 0.5 meV lower than the in-plane spin
orientation. Comparing Fig. 2(b) to Fig. 2(a), they are
almost the same, except a sizable bulk band gap (9.5
meV) opened at K and K ′ Dirac points around Fermi
level, which can be see more clearly from the magnified
band in Fig. 2(d) compared to Fig. 2(c).

We checked that the Dirac states mainly come from the
Mn d orbit, with little contribution from the C p orbit,
as shown in Fig. 3(a). Therefore, the Dirac band around

Figure 3: (a) Projected density of states of Dirac bands
around the Fermi level. (b) Berry curvature for the whole va-
lence bands (blue solid line) and the highest occupied valence
band below the Fermi level (red open circle) along the high-
symmetry directions. Inset: the 2D distribution of berry cur-
vature for the whole valence bands in the momentum space.
The first Brillouin zone is denoted by the dashed line. (c)
Semi-infinite edge states inside the Dirac gap of the TMn lat-
tice. (d) 3D spin texture round K and K

′ for the highest
occupied valence band and the lowest unoccupied conduction
band.

the Fermi level originates from the hexagonal Mn lattice.
To identify the topological properties of the Dirac gap,
we calculated the Berry curvature of the bands using the
Kubo formula [16, 17],

Ω(k) =
∑

n

fnΩn(k),

Ωn(k) = −
∑

n′ 6=n

2Im
〈ψnk|υx|ψn′k〉〈ψn′k|υy|ψnk〉

(εn′k − εnk)2
,

(1)

where n is the band index, εnk and ψnk are eigenvalue
and eigenstate of band n, respectively, υx/y is the velocity
operator, fn is Fermi distribution function. We have used
the maximally localized Wannier functions (MLWFs) to
calculate the Berry curvature by using the Wannier90
package [18]. The inner energy window used to accu-
rately reproduce the first-principles bands is set from
Ef−8.0 eV to Ef+3.0 eV. Fig. 3(b) shows the Berry cur-
vature for the whole valence bands (blue solid line) along
the high-symmetry directions and the corresponding 2D
distribution in momentum space (inset). We see that the
nonzero Berry curvatures are localized around K and K ′

points with the same sign. Integrating the Berry curva-
tures over the first Brillouin zone, we obtain the Chern
number, C = 1

2π

∫
BZ

d2kΩ = 1, with each Dirac cone
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(K and K ′) contributing 0.5. Such nonvanishing Chern
number characterizes a quantized Hall conductivity and
confirms the QAHE in the TMn lattice.

The nonzero Chern number can also be manifested by
the presence of chiral edge states within the topological
nontrivial Dirac gap. By using the MLWFs obtained from
the first-principles calculation, the edge Green’s function
[19] of the semi-infinite TMn lattice is constructed and
the local density of state (LDOS) of edge states are cal-
culated [20, 21], as shown in Fig. 3(c) for one of the edges
(the LDOS of the other edge state is symmetric to this
one). The number of the edge states indicates the ab-
solute value of the Chern number. Apparently, the one
chiral edge state observed in the Dirac gap is consistent
with the calculated Chern number C = 1.

To better understand the odd Chern number C = 1,
the Berry curvature for the highest occupied valence band
(VB) below the Fermi level is also calculated, as shown
in Fig. 3(b) (red open circle), which completely matches
the total Berry curvature curve. This indicates that the
sum of Chern number for other valence bands below the
highest occupied valence band is zero. Thus, we can fo-
cus on the highest occupied valence band only, and ex-
amine its spin components around the Dirac gap. As
a comparison, the lowest unoccupied conduction band
(CB) above the Fermi level is also studied. As shown
in Fig. 3(d), the spin textures for VB and CB are uni-
formly pointing along the −z direction aroundK and K ′,
as both come from the spin-down bands. Qiao et al. [6]
recently showed that such spin texture has no contribu-
tion to the Chern number, but the pseudo-spin texture
of the Dirac states may contribute to the Chern number.
To see whether the nontrivial topology of our TMn lat-
tice is also originated from the pseudo-spin texture, we
construct a tight-binding (TB) model, as follows.

Since our TMn lattice has inversion symmetry, the gap
opening at the Dirac point cannot be induced by the
Rashba SOC as in the doped graphene [5–7], but instead
by the intrinsic SOC of Mn atoms. To further illustrate
the intrinsic SOC effect, we write a single π-band TB
model to describe the Dirac bands of hexagonal TMn
lattice. For a simple approximation, the TB Hamiltonian
with exchange field and intrinsic SOC can be written as,

H =t
∑

〈i,j〉,α

c+iαcjα −M
∑

i,α,β

c+iαs
z
αβciβ+

λso
2i√
3

∑

〈〈i,j〉〉

c+i ~s · (~dkj × ~dik)cj .
(2)

Here, c+iα and ciα are π-band creation and annihilation
operators, respectively, for an electron with spin α on
site i. The first term is the nearest-neighbor hopping
with magnitude t. The second term is the exchange field
with magnitude M . The third term is the next-nearest-
neighbor intrinsic SOC with amplitude λso, ~s is the spin
Pauli matrix, ~dkj is the unit vector pointing from site j to

k. We note that this intrinsic SOC term forbids mixing
of spin-up and spin-down states due to its special nature
of 2D geometry, a condition that will breakdown if the
structure is not perfect 2D.

Figure 4: TB Band structure with (a) M=0 and λso=0, (b)
M=0 and λso=0.05t, (c) M=0.5t and λso=0.05t and (d) M=4t
and λso=0.05t. (e) Berry curvatures by setting the Fermi
level within the intrinsic SOC gap indicated by the arrows
and the resulting Chern numbers. Red (blue) color denotes
spin-up (spin-down) bands. (f) and (g) 3D spin and pseudo-
spin texture around K and K

′ for band-1 and band-2 shown
in (d).

Diagonalizing the above Hamiltonian in reciprocal
space, we obtain its band structure, as shown in Fig.
4. In our calculation, all the parameters are scaled with
the hopping parameter t. Without SOC and exchange
field, the corresponding band structure along the high-
symmetry directions is shown in Fig. 4(a), where we can
see the linear Dirac bands at K and K ′ points. When we
turn on the SOC but without the exchange field, a band
gap is opened at the Dirac points, as shown in Fig. 4(b).
Without the exchange field, all the bands are spin degen-
erated in Fig. 4(b). When we turn on both SOC and ex-
change field, the spin degeneracy is lifted. If the exchange
field is large enough to overcome the SOC gap, the spin-
up (red line) and spin-down (blue line) bands will cross
over with each other, as shown in Fig. 4(c). The situation
here, however, is different from the case of Rashba SOC
in doped graphene [5–7], as there is no SOC gap opening
at the band crossing points with different spins in the
physical regime of small magnetization. However, if we
further increase the exchange field, the spin-up and spin-
down bands will completely separate from each other, as
shown in Fig. 4(d), which corresponds to our case of TMn
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lattice. Then, we have a global gap induced by intrinsic
SOC, leading to QAHE. To further check the topological
properties of the gap states induced by intrinsic SOC, we
calculated the Berry curvature by setting the Fermi level
inside the spin-up and spin-down Dirac gap, respectively
(The real TMn lattice has the Fermi level in the gap of
spin-down bands). The corresponding Berry curvature
and Chern number are shown in Fig. 4(e). We found the
non-zero Berry curvature that localizes around the Dirac
point and the C = −1 (C = 1) for spin-up (spin-down)
bands, consistent with our first principles calculations.
Thus, we confirm that the intrinsic SOC in TMn lattice
is responsible for gap opening to realize the QAHE.

To reveal the difference between spin and pseudo-spin,
we calculate the Chern number (topological charge) re-
sulting from the spin and pseudo-spin texture separately,
using the the TB model. The spin and pseudo-spin
components are defined as [6] 〈si〉 = 〈ψ|I ⊗ si|ψ〉 and
〈σi〉 = 〈ψ|σi ⊗ I|ψ〉, respectively, where I is a 2×2 iden-
tity matrix, si (σi) is the spin (pseudo-spin) Pauli ma-
trix with i = x, y, z and |ψ〉 is the eigenvector of Eq.
(2) in reciprocal space. Here, we choose the spin-down
bands labeled with band-1 and band-2 in Fig. 4(d) for
our calculation, as our first-principles calculations show
only spin-down bands at the Fermi Level [Fig. 2(a)]. Fig.
4(f) shows the TB spin texture with all spins uniformly
pointing along the −z direction, consistent with the first-
principles results [Fig. 3(d)]. However, the pseudo-spin
texture is not uniform, as shown in Fig. 4(g). Its in-plane
components have different patterns depending on the val-
leys (K and K ′) and bands (band-1 and band-2), while
its out-of-plane components only exist near the valley
and point along either −z or z direction. The spin and
pseudo-spin Chern number can be calculated as [6, 22]
n = 1/4π

∫
dk2(∂kx

ĥ × ∂ky
ĥ) · ĥ, where ĥ = h/|h| with

h representing the projection of Hamiltonian in Eq. (2)
into spin or pseudo-spin space. Physically, the unit vec-
tor ĥ represents the expectation value of the orientation
of the spin or pseudo-spin associated with the eigenvec-
tor |ψ〉. For band-1 in Fig. 4(d), we found nspin=0 and
npseudo = 0.5 for both valleys. The pseudo-spin texture
provides a half topological charge, corresponding to a
meron. Thus, by counting two valleys’ contribution, the
Chern number C = 1. In addition, the sign of the topo-
logical charge is determined by the details of the pseudo-
spin texture. For band-2 in Fig. 4(d), we found nspin=0
and npseudo = −0.5 for both valleys. Therefore, the total
Chern number for band-1 and band-2 is zero, which is
consistent with our first-principles result.

Besides realizing the QAHE in a new organic molecu-
lar lattice, it is important to point out some new physics
in our system in comparison with previous works. The
QAHE is our proposed TMn lattice has an odd Chern
number (C = 1) which is induced by intrinsic SOC tak-
ing place in the strong magnetization regime, while the
QAHE in the transition metal doped graphene has an

even Chern number (C = 2) which is induced by Rashba
SOC taking place in the weak magnetization regime. It
was shown that the d-states in 5d transition metal doped
graphene plays a determining role in realizing the QAHE
and there exists also a global Dirac gap between the
bands of the same spin [Fig. 2(c) in Ref. 7], but it is
0.27 eV below the Fermi level and its Chern number is
even (C = −2).

Lastly, one critical point is whether the topological
properties of TMn lattice can remain on a substrate.
Naturally one should look for a substrate with minimal
interfacial interaction with the TMn lattice. To test out
this possibility, we have placed the TMn lattice on top
of graphene [Fig. S1(a)] [23], which is expected to have
a weak van der Waals interfacial interaction and right
hexagonal symmetry. Our calculations show that because
of lattice mismatch, the TMn lattice becomes a flat struc-
ture instead of the freestanding buckled structure, but
the main features of QAHE remain intact. There is still
a SOC gap at the Dirac point around Fermi level [Figs.
S1(e) and (f)], within which a nontrivial topological edge
state resides [Fig. S1(g)]. These results demonstrate the
feasibility of attaining the QAHE of TMn lattice on a
substrate.
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