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Abstract: 

The ring angular correlation function is a characteristic feature determined by the particle structure. 

Averaging over a large number of ring angular correlation functions calculated from X-ray diffraction 

patterns will cancel out the cross-correlations between different particles and converge to the 

autocorrelation functions of single particles. Applied on heterogeneous disordered ensembles, the 

retrieved function is a linear combination of single-particle autocorrelation function multiplied by their 

molar ratios in a heterogeneous system. Using this relation, the ring angular correlation functions of the 

individual component particles in the heterogeneous system can be retrieved through the high throughput 

fluctuation X-ray scattering technique. This method is demonstrated with a simulated heterogeneous 

system composed of nanorods, nanoprism, and nanorice.  

 

Structures at atomic scales are traditionally determined through X-ray crystallography that 

amplifies scattering intensities by introducing spatial periodicity. For amorphous materials and many 

macromolecules, such as viruses, proteins and biofilms, it is hard to determine structures due to their 

incapability to crystallize or change of configuration during crystallization.  The advance of X-ray free 

electron laser (XFEL) provides unprecedented beam brightness and enables recordings of single particle 

diffractions, opening a new field of structural determination beyond crystallography and attracting intense 
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research activities recently [1-5]. However, there are several experimental and theoretical difficulties that 

hinder the development of this diffract-before-destroy technique [6-8]. For example, it is technically 

challenging to select a single particle and align it with a tiny X-ray beam. The following data analyses and 

structural reconstructions could be complicated due to the lack of information on particle orientations. 

Complementary to single molecular X-ray scattering, the fluctuation X-ray scattering (FXS) technique 

developed by Kam [9-10] promises structural determination without crystallization by taking full 

advantage of the short pulse and high peak brightness of XFEL. The difficulty of targeting a single 

particle could be overcome in a FXS measurement by extracting structural information from the scattering 

patterns of a disordered ensemble of particles. Experiments on two-dimensional systems have recently 

been carried out on gold nanorods [11-12]  and platinum coated gold nano-dumbbells [13], demonstrating 

Kam's original concept of single particle structural determination by FXS [9]. On the other side, structure 

reconstruction from correlation function is not as deterministic as that from single shot scheme due to data 

deficiency [14]. The signature, ring angular correlation function, extracted from the particle system is 

statistical information. FXS is a complementary rather than a substitute method for single shot diffraction.  

In this letter, we extend Kam's theorem in the two-dimensional case by introducing particle 

heterogeneity and showing the feasibility of structural determination from mixtures of several kinds of 

particles. Following Kam's derivation[9] for well-spread homogeneous particles, the resulting X-ray 

diffraction pattern is the superposition of those from individual particles; and its Ring Angular 

Correlation (RAC) functions consist of two terms, the single particle autocorrelation and the interparticle 

cross-correlation. Averaging over a large number of RAC calculated from X-ray diffraction patterns will 

lead to the cancellation of the second term due to the random angular shifts and converge to the 

autocorrelation function of a single particle. When adding additional species into the system while 

keeping the particles well dispersed, the final diffraction pattern is the sum of individual particle 

diffractions from all species, and its RAC preserves the autocorrelation and intra-species cross-

correlations with additional terms from the inter-species cross-correlations. Both the cross-correlations 

between particles of the same and distinct species cancel out by averaging angular correlations from a 



sufficiently large number of scattering patterns. The only signals that emerged from this process are the 

sum of the individual particle autocorrelations of the same species.  These autocorrelation terms are 

linearly proportional to their particle numbers (molar concentrations), hence the autocorrelation functions 

of each individual species may be obtained experimentally through a number of mixtures with various 

molar ratios. The structures of individual particles can be subsequently reconstructed by applying a 

reverse Monte Carlo type method through iterative algorithms [7, 15] 

A FXS measurement can be performed by collecting scattering patterns with either an intense 

radiation of pulse lengths shorter than the rotation diffusion time of the scattering particles, or a 

continuous X-ray beam from stationary particles held in space. X-ray CCD detectors with a wide dynamic 

range and low noise level are usually required to capture diffraction patterns to a large extent from a 

diluted sample of scatters. The background scattering has to be properly handled and carefully subtracted 

from the recorded diffraction images before any meaningful structural information can be extracted from 

them. Because FXS experiments are carried out in the same transmission geometry as that applied in a 

Small Angle X-ray Scattering (SAXS) study, the two-dimensional diffraction pattern can be conveniently 

expressed in the polar coordinates with their origin at the direct beam position.  In this way, a single 

particle diffraction pattern can be expanded with a series of Fourier expansions: 

 ( ) ( )∑=
m

im
m eqIqI φφ,          (1) 

where q is the wave vector transfer and φ is the polar angle. Subtracting the mean values from the data I(q, 

φ) along each resolution ring q, one finds the fluctuation ( )φ,qI f : 

 I f q,φ( )= I q,φ( )− I q,φ( ) φ         (2)
 

where ( )
φφ,qI  represents the usual SAXS signal for small values of q and it equals to I0(q) for m=0 as 

shown in Eq.(1). When the particles are randomly oriented about a single axis and spatially well separated 

with interparticle interference negligible, the total fluctuation scattering intensity If from N particles can 

be written as 
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where ηj is the angular orientation of particle j. The ring angular correlation along an equal q is defined as 

C2 q,Δφ( ) = 1
Nφ

I f q,φ( ) I f q,φ + Δφ( )
φ
∑       (4) 

where  is the number of angular divisions along a ring of equal q. Substitute Eq. (3) into Eq. (4), one 

can get  
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Next, we consider the situation where the N particles in the system are not identical, but an ensemble of n 

different species αp, (p = 1, 2, …, n), each with Np particles. Their RAC is calculated by separating each 

particle species in Eq. (5) so that the term in the curly brackets can be written as 

{ } = I jjr ,m
α jr q( ) Ikks ,−m

αks q( )e
−im η j jr

−ηkks( )
ks=1

Ns

∑
s=1

n

∑
jr=1

Nr

∑
r=1

n

∑

= I j1,m
α1 q( ) Ik1,−m

α1 q( )e−im η j1−ηk1( )

k1=1

N1

∑ + + I j1,m
α1 q( ) Ikn ,−m

αn q( )e−im η j1−ηkn( )

kn=1

Nn

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j1=1

N1

∑

+ I j2 ,m
α2 q( ) Ik1,−m

α1 q( )e−im η j2 −ηk1( )

k1=1

N1

∑ + + I j1,m
α1 q( ) Ikn ,−m

αn q( )e−im η j2 −ηkn( )

kn=1

Nn

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j2=1

N2

∑

+

+ I jn ,m
αn q( ) Ik1,−m

α1 q( )e−im η jn −ηk1( )

k1=1

N1

∑ + + I jn ,m
αn q( ) Ikn ,−m

αn q( )e−im η jn −ηkn( )

kn=1

Nn

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥jn=1

Nn

∑
              (6)

 

where ( )qI p

p mj
α
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αp species. By simplifying the above expression, one would obtain 
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where the first term is the particle autocorrelation, the second term is the interparticle cross-correlation 

within the same species, and the third term is the intraparticle cross-correlation between two distinct 

species. Both the second and third terms have nonzero random phases e
−im η jp −ηkp( )  and e

−im η jp1
−ηkp2( )  that 

account for the random angular shifts between distinct particles. Averaging a large number of RACs 

computed from diffraction images will lead to the cancellation of these random phases so that the two 

cross-correlation terms will tend to be zero: 

( ) ( ) ( ) 0 
1 1

⇒∑ ∑ ∑
= = ≠

−−
−

DP

p

p

p

pp

pkpjpp

N

n

p

N

j

N

jk

im
mm eqIqI ηηαα

      (8)

 

( ) ( ) ( )
0 

1 111 12

2

2

21
1

1

21 ⇒
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ∑ ∑∑

= ≠ =

−−

=
−

DP

p

p

pkpj
p

p

pp

N

n

p

n

pp

N

k

im
N

j
mm eqIqI ηηαα

    (9)

 

where NDP is the total number of diffraction patterns collected. In this way, Eq. (5) for a particle mixture 

can be rewritten as 
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where C2
mix q, Δφ( )  is the RAC of the particle mixture and C2

αp q, Δφ( )  is the RAC of particle component 

αp. Inversely, the RAC of individual component species can be obtained through the mixture RAC 

obtained from different ratios of particle mixtures using the following relation, 
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where Nij and C2
mixi q, Δφ( )are the number of particle species αj and the total RAC of the ith mixture.  

Next, we demonstrate an example of how to extract structural information from X-ray scattering 

patterns of mixtures made of three kinds of nanoparticles: nanorods, nanoprism, and nanorice. The 

geometric sizes of the nanorods are 17.5 nm in radius and 75 nm in length; the nanoprism have a height of 

26 nm and a base of 80 nm; the nanorice have the long and short axes equal to 20.5 nm and 10.2 nm, 

respectively. Three mixtures are studied in the simulation with molar ratios of nanorods: nanoprism: 

nanorice as 3:1:1, 1:3:1, and 1:1:3, respectively.  

The workflow of the component nanoparticle structure determination from the heterogeneous 

systems is illustrated in Fig. 1. In the first step, a series of two-dimensional micrograph samples are 

simulated with constant composition of nanoparticles that are randomly distributed and oriented. The 

distances between particles are large enough so that the interparticle interference is negligible. Second, X-

ray scattering patterns are computed from the simulated samples using Fourier transformation. Since the 

method is based on assumption that the system is homogeneous distributed and all the particles (proteins) 

are randomly distributed, the diffraction patterns are from subsystem with same ratio of components, 

identical shape for each component, and all particles randomly oriented. If anyone of the assumption 

violated, this method will have problems on convergence. Third, the ring angular correlation functions are 

obtained from scattering patterns according to Eq. (4). Fourth, for a heterogeneous system with the same 

mixture composition, a large number of RAC patterns are summed up. In the process, the total RAC 

pattern will regress to a constant image that is characteristic of the heterogeneous system, a function of 

composition and RACs of the components. Fifth, using Eq. (11) to retrieve RAC of a single nanoparticle 



component. The final step is to use an iterative algorithm to reconstruct the structures of the components 

from their RAC6.   

The RAC is a feature determined by the structure of an individual nanoparticle component. To 

assess the accuracy of structural determination from heterogeneous systems using the above method, the 

similarity between the recalculated RAC, reC , and the original RAC, expC , calculated directly from a 

single nanoparticle is represented by the absolute value of normalized cross-correlation coefficient r:  
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where ⋅⋅, represents the inner product, ⋅  is the L2 norm, and ⋅  is the average. This correlation function 

has been applied in signal processing, such as pattern recognition, image processing, and single particle 

analysis, as a measure of similarity. With a range from 0 to 1, a value of 1 for correlation function refers 

to strong linear proportional correlation, while a value of 0 implies no linear correlation and high disparity 

between the recalculated and experimental structure information. 

The ideal regressed summation of RAC from a heterogeneous system can be calculated directly 

from the diffraction patterns of individual components and their composition ratios. With the increase of 

sampling, the averaged RAC will regress to this ideal summation. Fig. 2 illustrates the evolution of 

similarity between the averaged RAC and ideal RAC with the increase of sampling for three kinds of 

nanoparticle mixtures. Generally, the RAC of the mixture with composition of nanorod: nanoprism: 

nanorice as 1:1:3 is slower to regress compared with the other two kinds of mixtures. The averaged RAC 

of these three mixtures from 10 samples and 500 samples are shown in the inserted figure.  

To validate this method, the RAC of single nanoparticles extracted from heterogeneous mixtures 

are compared with the ideal RAC from single nanoparticles. Fig. 3 illustrates the evolution of correlation 

coefficient with the number of sampling. With the increase of sampled scattering patterns, the 

recalculated RAC pattern becomes closer to that of the ideal RAC of the single particle. With 100 samples, 

the extracted RAC of nanorods and nanoprism from heterogeneous systems are very close to their ideal 



RAC with the correlation coefficient r around 0.9. However, the extracted RAC of nanorice is slow in 

regression, with r around 0.63 even after 5000 samples. The inserted figures in Fig. 2 are the extracted 

average RAC patterns of individual components from three heterogeneous systems using 10 and 1000 

samples, respectively.  

To investigate the reason for the slow regression of the extracted RAC pattern of nanorice, 

structure extraction using the RAC method is also performed in a homogeneous ensemble with 100 

nanoparticles per sample. The correlation coefficient r between the extracted RAC from homogeneous 

ensembles and the ideal RAC are plotted as a function of sampling numbers in Fig. 4. The regression 

behavior of nanorice is generally slower than those of nanorods and nanoprism.  This contributes to the 

slow RAC regression for nanorice extracted from the homogeneous ensembles. The slow convergence 

rate of nanorice may be due to the structure complexity of nanorice comparing with nanoprisms and 

nanotubes, deserving further investigation.    

In conclusion, we have applied ring angular correlation functions to extract structures of 

individual particles in a heterogeneous system by extending Kam’s original theory from a uniform to a 

complex heterogeneous system. An example of heterogeneous system consisting of three kinds of 

nanoparticles demonstrates the feasibility of structural determination using the RAC method. The 

recalculated RAC of component particles carrying unique structural information regress to the ideal 

solutions with the increase sampling of scattering patterns from a heterogeneous system. With the 

development of powerful modern light sources and the availability of fast CCD detectors, this method can 

be applied in a signal-path mechanism study and other real-time basic science investigations of dynamic 

structure evolution by providing a quick structural determination solution for the components in a 

complex heterogeneous system, such as protein solution mixtures. It is difficult or even impossible to 

crystallize some kinds of proteins such as human neutrophil elastase, Escherichia coli DHNA, 

Streptococcus pneumoniae DHFR, etc, due to its intrinsic structure unstable to crystal contact [16]. Using 

dye to label protein may change the global conformation [17] critical to signal pathway, leaving X-ray 



scattering an ideal method for structure determination of protein mixture. Signal pathway study involves 

dynamic conformation change during signal transduction[18], which makes it impossible to separate 

components completely [19].  High Throughput Fluctuation X-ray Scattering under development will 

become an indispensable tool capable to determine component structure change during signal 

transduction.   
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Figure Caption 

 

Fig. 1. Scheme of single-particle structural determination from heterogeneous ensembles using fluctuation 

X-ray scattering technique. 

Fig. 2. Evolution of the correlation coefficient r between the averaged RAC of heterogeneous systems and 

the ideal RAC as the number of sampling n increases. 

Fig. 3 Evolution of the correlation coefficient r between the extracted RAC of the nanoparticles from 

heterogeneous systems and the ideal RAC of the nanoparticles with the increase of sampling number n. 

Fig. 4 Evolution of the correlation coefficient r between the averaged RAC of the nanoparticles from the 

homogeneous systems and the ideal RAC of the nanoparticles with the increase of sampling number n. 

 










