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The theory of damping and nonlinear frequency shifts from particles resonant with Ion Acoustic
Waves (IAWSs) is presented for multi-ion species plasma and compared to driven wave Vlasov simu-
lations. Two distinct TAW modes may be supported in multi-ion species plasmas, broadly classified
as fast and slow by their phase velocity relative to the constituent ion thermal velocities. In current
fusion-relevant long pulse experiments, the ion to electron temperature ratio, 7i/Te, is expected
to reach a level such that the least damped and thus more readily driven mode is the slow mode,
with both linear and nonlinear properties that are shown to differ significantly from the fast mode.
The lighter ion species of the slow mode is found to make no significant contribution to the ITAW
frequency shift despite typically being the dominant contributor to the Landau damping.

PACS numbers:

The kinetic damping of large-amplitude, low-frequency
waves in multi-ion species plasma plays an essential role
in Inertial Confinement Fusion (ICF). In ignition experi-
ments at the National Ignition Facility (NIF), gold-boron
and helium-hydrogen mixtures were proposed to increase
the Landau damping of Ion Acoustic Waves (IAWSs) and,
thereby, to suppress the growth of Stimulated Brillouin
Scattering (SBS) [1]. In addition to its low atomic num-
ber, high density and a host of manufacturing consid-
erations, CH was chosen as the standard ablator mate-
rial for NIF ignition capsules in part because of concern
that, as the plasma ablated from the capsule streamed
into the path of the laser, IAWs in a pure beryllium or
diamond (HDC) plasma would backscatter via SBS more
light than in a CH plasma [2]. When significant energy
is transferred to IAWs, trapping of particles in the wave
potential may produce a non-Maxwellian distribution, re-
ducing Landau damping [3] and potentially eliminating
the higher TAW damping of the multi-ion species plas-
mas.

In this Letter, we address two distinct ion acoustic
modes in a two-ion species plasma, which have been
observed in dedicated scattering experiments [4]. One
of these modes, known as the slow mode (defined fully
later), has a phase velocity nearly equal to the ion ther-
mal velocity of the lighter ion species. Plasma wave
modes with phase velocities close to the thermal velocity
of one of the plasma species, broadly classified as slow
waves, are of universal interest in plasma physics. A
slow mode qualitatively similar to that addressed in this
Letter present in single-ion species plasmas has been pro-
duced recently in laboratory experiments [5].

This Letter provides the first examination of the com-
plex nonlinear behaviour of multi-ion species IAWs as
the wave amplitude and ion to electron temperature ra-
tio T} /T, are varied, the understanding of which are nec-

essary for modeling of SBS and interpreting SBS experi-
ments and thus for selecting optimal ICF hohlraum ma-
terials. In NIF ignition experiments [6], T in the path
of the laser beam exceeds 2 keV and T} approaches T, /2
at peak laser power. Via SBS, [AWs may grow and scat-
ter significant laser energy away from the desired path
in ICF experiments, impeding the ablation process nec-
essary for ignition. The question of which IAW mode is
least damped thus becomes of great importance in un-
derstanding the behaviour of SBS. As T; — T, the least
damped mode is the slow mode, with phase velocity close
to the H ion thermal velocity [7]; this property of the slow
mode of CH holds for all physically relevant T} /T, but is
applicable also for C/H number fractions as low as ~0.01
and for the slow modes of a diverse range of plasmas. In
space plasmas, values of T;/T, of order 1 are common,
and slow modes have been suggested as an important
source of observed turbulence in the solar wind [8].
Previously, we showed for a single-ion species plasma
the importance of including the kinetic contribution of
the electrons and harmonic generation to describe TAWs
driven to a nonlinear BGK-like equilibrium state [9].
There, we found that the ions of charge number Z pro-
vided the dominant damping in the linear state and
the dominant contribution to the Kinetic Nonlinear Fre-
quency Shift (KNFS) in the BGK-like state if ZT,/T; <
10. Based on these results, one might expect for a CH
plasma that the H ions with Z = 1 would provide the
dominant frequency shift in the nonlinear state. How-
ever, the theory and Vlasov simulations of KNFSs for
fast and slow modes presented here show that the H
ions play almost no role in the KNFS of the slow mode;
average-charge ion models of multi-ion species plasmas
(where the plasma is simplified to a single ion species)
may be misleading in both the magnitude and sign of the
KNFS. It will also be shown by comparison of theory and



Vlasov simulations that the distribution function for all
species of the least damped mode is best represented by
an adiabatic one (to be specified clearly later), in con-
trast to single-ion species simulation results [9] (where
the ions were found to be excited non-adiabatically as T;
approaches Tp). In the regime considered here, both har-
monic generation and kinetic wave-particle interactions
are required to achieve quantitative agreement between
theoretical models of the nonlinear IAW frequency and
Vlasov simulations. While we address the physically rel-
evant case of CH, these findings are applicable to many
multi-species plasmas.

We consider a neutral, unmagnetized, fully-ionized CH
plasma (50:50 mix) with equal ion species temperatures
(Tu = Tc = T;). The ion species in multi-ion modes are
typically characterized by their thermal velocities v
relative to the phase velocity vg of an IAW of wave num-
ber k and frequency w, where vy = Relw|/k, v =
\/Ti/m;i, and m; is the mass of an ion species. TAW
modes are loosely classified as “fast” when vy > v¢n1,2
and “slow” when vin1 > v > Veno (in our example,
species 1 is the “light” H and 2 is the “heavy” C). The
properties of an IAW mode, including its phase veloc-
ity and Landau damping, are dependent on the relative
fractions and mass ratios of the ion species and on T;/Te.
Across the parameter space of interest, the ion and phase
velocities of the fast mode of CH are all well-separated.
The so-called slow mode, however, has a value close to
unity of the ratio vg/ven,u that is only weakly dependent
on T;/T,, making conventional analytic treatments of the
slow mode difficult.

The multi-species, linear kinetic dispersion relation for
one dimensional (1D) longitudinal plasma waves in a non-
magnetized, homogeneous plasma is given by,

1
eﬂwx):1+§:szaXﬁzzﬁggﬁwqq% (1)
species
where x; is the susceptibility of species j (electron, H
ion or C ion) with density Nj, charge number Z;, tem-
perature T; and mass mj, for which A, ; = v, /w2
Ut2h,j =T;/m;, wgyj = NjZ;eQ/mjeo, and z; = w/kvgn ;.
e is the magnitude of the electron charge and ¢ is the
permittivity of free space. W is the dispersion function,

W(z) = \/%/daj %exp(—ﬁ?/Z), @)

where ¥; = wv/vgn,;, 2z is generally complex and a
Maxwellian velocity distribution for all species is as-
sumed. The dispersion relation e(w,k) = 0 relates w
to k for any given electrostatic normal mode.

Using the parameters discussed earlier, W may be ap-
proximated straight-forwardly and an analytic expression
found when |z| < 1 (e.g. by Taylor expansion of W,
here valid for the electrons) or |z| > 1 (W may be ex-
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FIG. 1: (a) Contours of solutions to the slow and fast IAW
mode dispersion relations for kAp.. = 1/3. As the ratio 73 /Ts
increases from 1/15 to 1/2, the frequency of the slow mode
moves from A to B and the fast mode from C to D. Below, the
(b)/(d) mode phase velocities, (c)/(e) total damping decre-
ment, fractional damping due to each species, and (f)/(g)
kinetic nonlinear frequency shift assuming adiabatic wave ex-
citation for all species (solid lines: er=Re[er,(Re[w], k)]; pat-
terned lines: er=Re[er, (w, k)]).

pressed as an asymptotic series, valid to reasonable ac-
curacy for the heavy C ions). Since for the H ions in the
slow mode |zg| ~ 1, neither these approximations nor
multi-pole expansions of W work well over the regime
of interest (see Ref. [7] and references therein for further
detail). Direct numerical solutions to Eq. (1) are shown
in Fig. la for the fast and slow modes, lying at inter-



sections of zero contours of the real and imaginary parts
of e(w,kApe = 1/3), where Ap. is the electron Debye
length (used throughout this Letter, kAp . = 1/3 is typi-
cal of SBS experiments, although kinetic effects are only
weakly dependent on this parameter). There are an in-
finite number of such intersections, each having different
Landau damping decrements v = —Im[w]/Re|w]; we re-
fer to as “the slow mode” and “the fast mode” the least
damped modes belonging to each class of mode.

Figures 1b-1le show the phase velocity and damping
corresponding to the fast and slow modes as a function
of Ti/T,; the slow mode is less damped than the fast
for T;/T. 2 0.2, and is thus preferentially driven in this
regime near the SBS threshold. It is interesting to ask:
which species contributes most to the damping? In the
resonant approximation (assuming Imw]/Re[w] < 1),
Eq. (1) may be solved to lowest order to yield the follow-
ing analytic expression for the linear Landau damping,
relevant to multi-species plasma waves:
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where 8, = \/m/20rk 3 (der /i) ", wr = Relw] and
er = Reler] (er is discussed later). Tilde denotes nor-
malization to electron quantities Ap e, Vth,e, Wpe, and T,
as appropriate. For the electrons in an IAW, 7./8, ~ 1.
Using Eq. (3), the fractional contribution of each species
to the total damping is plotted in Figs. 1c and le (the
restricted plotted range corresponds to the limits of the
resonant approximation). Thus, across the regimes of
physical interest (i.e. the more weakly damped regimes of
each mode), the electrons contribute most to the damp-
ing of the fast mode for T;/T, < 0.04 and the H ions
for T; /T, Z 0.04, while the H ions dominate the damp-
ing of the slow mode for T;/T, < 0.7 and the C ions for
T,/T, = 0.7.

The travelling potential ¢ of a plasma wave, propa-
gating at the phase velocity vy, traps particles within
the plasma with velocities close to vg. This trapping, in
addition to suppressing Landau damping [3], leads to a
nonlinear frequency shift 5w§if away from wgr (referred
to previously as the KNFS). Each species in the plasma
makes a contribution to this effect, the significance of
which is dependent upon the plasma parameters. Sim-
ple analytic expressions in which 5w11§i£‘ is proportional
to the square root of the potential amplitude have been
derived in the sudden [10, 11] and adiabatic limits [11]
of wave generation (these derivations are for the case of
a Langmuir wave, but were shown to apply to TAWSs in
Ref. [9]), the latter being the more relevant to stimu-
lated scattering processes and the conditions discussed
here. Following this methodology, one finds for a multi-

species plasma wave in the resonant approximation with

Maxwellian distributions,
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where B, = /2/7k%(0er/Oir), & = ed/T.,
o; is a constant with a value dependent on how
the species within the wave was excited (for adia-
batic excitation, a;=a.q=0.544; for sudden excitation,
j=05,9=0.823 [11]), and the sign of the contribution
of each species to the total KNFS is determined by
K(z) = (27 — 1) exp (=23 /2).

Figures 1f and 1g plot Eq. (4) for the fast and
slow wave, respectively (qe=am=ac=a,q, justified by
Vlasov simulations shown later, and deg/0wg is evalu-
ated numerically). Over the physically relevant (weakly-
damped) range of T} /T, for each species, several features
are apparent. For both the fast and the slow modes ex-
amined here, the positive frequency shift due to the elec-
trons opposes and is of greater magnitude than the neg-
ative shift due to the ions, thus computationally lighter
Boltzmann fluid models of electrons favoured in many
past studies of IAWs would give incorrect results as they
neglect electron trapping; the full kinetic behaviour of
electron and ion species must be captured, as established
in Ref. [12] for particle-in-cell simulations. One sees im-
mediately from Fig. 1d that for the H ions of the slow
mode, K(zg) =~ 0, i.e. H ions make a negligible contri-
bution to the KNFS [13], yet contribute most to Landau
damping in the linear limit; the C ions however make a
significant contribution to the KNFS. In contrast, H ions
in the fast mode provide a significant contribution to the
KNFS, while the C ions with v c < vg (see Fig. 1b)
are negligible for both the KNFS and the linear Landau
damping.

In the derivation of dwki® in Refs. [10] and [11], it is
seemingly ambiguous as to whether one should take eg =
Reler(Re|w], k)] or eg = Reler(w, k)] (this is discussed in
detail in Ref. [9]). Outside of the weakly damped region
for each mode, as Im[w] approaches Re[w], Eqgs. (3) and
(4) differ greatly depending on the choice of er made,
giving results that are unphysical over certain ranges.
However, within the weakly damped regimes for both
modes, where the resonant approximation is valid, the
choice of er is of limited importance, as seen in Figs.
1f and 1g (in the following weakly damped cases, eg =
Reler (Re[w], k)] is chosen).

In order to investigate the physics described previ-
ously, the code SAPRISTI was used (described in Ref. [9]),
which solves the full Vlasov-Poisson system for electrons
as well as multiple ion species using a semi-Lagrangian
scheme and retaining one dimension in space and veloc-
ity (1D1V). By restricting the simulation size to a single
wavelength (composed of 128 spatial mesh points) with
periodic boundary conditions, processes such as [AW de-
cay and modulational instability were prevented from oc-
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FIG. 2: Ion distributions from Vlasov simulations for the fast
and slow modes after an undriven BGK-like mode has been
established. Here, ¢ ~ 0.1 for both modes.

curring, allowing the precise analysis of the frequency of
the nonlinear wave in isolation. To resolve the electron
kinetic behaviour, a time step of 0.lw, L was used. A
minimum of 50 mesh points across the steady-state trap-
ping velocity width were ensured, with a typical total of
512 uniformly spaced velocity mesh points for the elec-
trons and 1024 for each of the ion species over the species
velocity range [—6uven,j, +6v¢n ;]

In simulations, an IAW was excited at its linear fre-
quency from an initially Maxwellian distribution using a
prescribed ponderomotive driver, applied to the electrons
as an external field in the Vlasov equation of strength
€Fdriver/ ApeTe = 1 X 103, that ensured growth was slow
on the time scale of the ion plasma and ion bounce fre-
quency, wy; = k(Zieg/m;)*/?. After establishing the
direction of the frequency shift of the mode by driving at
a fixed frequency in test cases, the driver was then swept
slowly in frequency from the linear mode frequency in the
direction of the observed frequency shift to prevent de-
tuning of the TAW which, without applying a very strong
driver, would otherwise prevent larger TAW amplitudes
from being obtained. Such a process allows phase-locking
of the mode to the driver, known as autoresonance, and
thus does not require feedback to maintain resonance.
After the desired amplitude was reached (taking times
of the order of 10°w, 1), the driver was switched off and
the TAW allowed to propagate freely. Measurements of
particle distributions (Fig. 2) and nonlinear frequency
shifts (Figs. 3c,d) were made after a BGK-like mode [14]
had been established due to trapping. The shift dwnr,
was determined by comparing the time-asymptotic state
of the free TAW to an TAW of zero amplitude (extrap-
olated from the lowest measured amplitude cases), and
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FIG. 3: (a) The trapped C ion distribution as a function of
energy (¢ ~ 0.1). (b) The relative amplitudes of the first and
second harmonics of each mode. Below, the measured fre-
quency shift of the (c) fast and (d) slow IAW modes compared
to kinetic and fluid analytic calculations, where “sudden” and
“adiabatic” refer to the excitation of the ions (e = @tad).

the amplitude to which the wave was driven was varied
to determine the dependence of dwyr, on ¢ (details of the
signal processing techniques used are given in Ref. [9]).
Two physically relevant, weakly-damped cases are pre-
sented here in detail: a fast mode, where T}/T, = 0.07,
and a slow mode, where T}/T, = 0.5 (points C and B,
respectively, in Fig. 1).

Figure 2 shows the distributions of the H ions, fg, and
C ions, fc, for both modes. Figure 2c shows that while
fu is heavily modified, the particles are roughly evenly
distributed across the trapping region. In contrast, the
trapped C ions of the slow mode and H ions of the fast
mode are concentrated at the separatrix, while there is
little evidence of trapping of C ions of the fast mode.
These numerically obtained distributions were compared
with the analytic distributions f,q and fs.q expected in
the adiabatic and sudden excitation cases, respectively,
using expressions given in Ref. [11], and are shown for the
slow mode C ions in Fig. 3a. The analytic calculations
were repeated using the actual ¢ taken from simulations
rather than assuming a sinusoid (and therefore including
the impact of harmonic generation); with the actual ¢,



the agreement between the adiabatic model and the sim-
ulation is excellent for all species of both modes across
all values of ¢ studied (5 x 1072 < ¢ < 0.1).

Harmonic generation in IAWs has been the subject of
many previous studies. Solving the homogeneous cold-
ion fluid equations for an TAW including its harmon-
ics (see, e.g., Pesme et al. [15]) results in a first har-
monic ¢; driving a second harmonic ¢9, scaling such
that |¢2| ~ [¢1/?, and a frequency shift of the funda-
mental Swi proportional to |¢;]?. In Fig. 3b, measured
ratios |po|/|p1| for the fast and slow modes are shown.
In fact neither fast nor slow modes show the scaling ex-
pected from a cold-ion fluid model. Single-species studies
of harmonic generation have also been found to diverge
from this model [9].

Figures 3c and 3d show the measured deviation in fre-
quency dwnr, from wy as a function of ¢ (for Vlasov re-
sults, we measure wy = w(¢ — 0); for analytic calcula-
tions, wg = wpg). The observed trend of increasing fre-
quency as a function of ¢ further supports the choice
of the adiabatic limit of a; in Eq. 4 for all species: us-
ing the sudden limit for the ions and an adiabatic limit
for the electrons would imply an overall negative shift in
frequency, contrary to what is observed in Vlasov simu-
lations. In single-species plasmas, the sudden limit was
found to better match Vlasov simulation results for ions
at high 7 /T, [9]; we observe that whether the nonlinear
response of a mode is better approximated by adiabatic
or sudden ion excitation limits is determined not only by
the rate of gain in ¢ compared to the ion bounce frequen-
cies, but on the properties of the mode.

From these results, it is clear that calculations of WX
from Eq. 4 match Vlasov results well for low ¢, but under-
estimate dwnr, at higher amplitudes where harmonic gen-
eration is expected to contribute a further positive fre-
quency shift. The fluid shift is also shown using a cold
ion model. While not formally consistent, a simple linear
sum of the kinetic and fluid frequency shifts shows con-
vincing agreement with Vlasov results for fast and slow
modes in both magnitude and ¢ scaling.

In summary, the rich and differing nonlinear be-
haviours of the fast and slow TAW modes of CH plasma
have been presented in detail for the first time in regimes
relevant to current ignition experiments. Good agree-
ment between multi-species analytic calculations of the
nonlinear frequency and highly-resolved Vlasov simula-
tions across the most physically relevant regimes is ob-
served. Across the more weakly damped regimes for each
mode, the overall positive sign of the frequency shift of
the fast mode, and of the slow mode for T;/T, < 0.6,

imply (I) the electron dynamics must be sufficiently re-
solved for all T} /Ty in order to accurately model nonlinear
TAWs, and (II) both modes are susceptible to modula-
tional instability of the type described in Ref. [16] over
these ranges.
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