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We propose to use the intrinsic two-level system (TLS) defect states found naturally in inte-
grated optomechanical devices for exploring cavity QED-like phenomena with localized phonons.
The Jaynes-Cummings-type interaction between TLS and mechanics can reach the strong coupling
regime for existing nano-optomechanical systems, observable via clear signatures in the optomechan-
ical output spectrum. These signatures persist even at finite temperature, and we derive an explicit
expression for the temperature at which they vanish. Further, the ability to drive the defect with
a microwave field allows for realization of phonon blockade, and the available controls are sufficient
to deterministically prepare non-classical states of the mechanical resonator.

Introduction.— Cavity optomechanics [1–3] has en-
abled the preparation of mechanical resonators in states
of low phonon occupation via optomechanical (OM) side-
band cooling [4–9], and to observe their quantum co-
herent interaction with light [9]. Further, OM systems
have enabled displacement detection at or even below the
standard quantum limit [10–12], thereby complement-
ing other mechanics-based sensing applications [13, 14].
They have also been proposed for creating macroscopic
quantum superpositions [15] as well as for applications
in quantum information [16, 17]. However, in experi-
ments carried out so far, the interaction between me-
chanical oscillator and cavity field is effectively linear,
while one of the major challenges in the field is to realize
non-linearities at the single phonon level. For example,
the intrinsic OM radiation pressure non-linearity is pre-
dicted to enable the generation of non-classical states of
light and mechanics [18, 19], provided that the single-
photon coupling rate exceeds the mechanical frequency
and the cavity decay rate. In multi-mode OM systems,
the same non-linearity can be exploited more easily and
it has been proposed to use it for enhanced readout [20]
and quantum information processing [21].

Here we propose an alternative route to render the
dynamics of the mechanical oscillator nonlinear at the
single quantum level: using its natural coupling to in-
trinsic structural two-level system (TLS) defects and
thereby alleviating the need to functionalize the system
[see Fig. 1(a)]. Ensembles of TLS defects were first stud-
ied in the context of the anomalous and universal low
temperature properties of glasses [22–26], where they
arise from frustration. In experiments involving Joseph-
son junctions, individual TLSs with transition energies
distributed well into the GHz regime were observed and
studied for their role in decoherence [27]. Nevertheless,
their comparatively long coherence times, and their abil-
ity to strongly couple to Josephson junctions via the elec-
tric dipole moment have enabled a TLS quantum mem-
ory [28]. In the same context, the influence of strain on
TLSs has been probed recently [29]. However, in the
OM setting, TLS ensembles have mainly been studied
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FIG. 1. (a) Strain-coupling of a single two-level system (TLS)
defect to an optomechanical system. (b) At low tempera-
ture, the defect can be effectively described by two states in
a double-well potential, where ∆0 is the tunnel splitting fre-
quency and ∆ the asymmetry frequency. (c) Schematic illus-
tration of decay channels and couplings (see text). Resonator
and TLS form a Jaynes-Cummings model (dashed box), ex-
hibiting the characteristic anharmonic spectrum shown in (d).

as a source of decoherence [30–32]. In this letter, we
demonstrate theoretically that the coupling of an indi-
vidual TLS to a localized phonon mode of an OM sys-
tem can be large enough to exceed the mechanical and
TLS dissipation rates, and hence it provides a route to
cavity QED-like experiments with single phonons. Such
experiments have recently been proposed using a differ-
ent class of defect states, consisting of donor-acceptor
impurity doped silicon [33, 34]. The interaction between
TLS and OM system is shown below to be described by
a Jaynes-Cummings (JC) Hamiltonian [31, 35], induces
single-phonon nonlinearities that can be witnessed in the
OM cavity output spectrum. Additionally driving the
TLS with microwaves leads to phonon blockade, entail-
ing a mechanical state with sub-Poissonian statistics; and
more complex mechanical states can be engineered using
suitable protocols. Beyond this, our results also apply to
other classes of defect states [33, 34, 36], and OM experi-
ments with single defects may mature our yet incomplete
understanding of TLSs in glasses [37].
Strong coupling between resonator and TLS.— We con-
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sider OM systems made of silica, where intrinsic TLSs
exist due to the amorphous nature of the material, or sil-
icon, where TLS defects reside in the amorphous native
(or artificially grown) oxide of the silicon surface [38].
OM systems can be described by an optical cavity mode
a coupled to a co-localized deformational mode b of fre-
quency ωm, with the Hamiltonian including the intrinsic
TLS given by

H = Hom +HJC +HTLS,µ. (1)

Here, Hom = −~∆La
†a + ~g(a + a†)(b + b†) describes

the standard linearized OM coupling of rate g in a frame
rotating at the frequency of the driving laser ωL, which
is detuned from the bare cavity resonance by ∆L [1, 2].
The remaining terms contain the interactions of the me-
chanical mode with the TLS and the microwave drive of
the TLS, as introduced below.

Defects in low-temperature glasses are effectively de-
scribed by TLSs with tunnel splitting ~∆0 and asymme-
try energy ~∆ [24], such that the eigenstates are split by
∆T =

√
∆2 + ∆2

0 [see Fig. 1(b)]. Since ∆ depends on the
strain in the material, the TLS in the OM system cou-
ples to the localized phonon mode b [24, 31]. The latter
produces a zero-point strain fluctuation on the order of

Szpf = (~ωm/2EVm)
1/2

, where E is the Young’s modulus
of the material and the mechanical mode volume Vm is
defined in analogy to optical cavity QED as [39]

Vm =

´
Tij(x)Sij(x) d3x

ESij(x0)Sij(x0)
. (2)

Here, Tij and Sij are the tensorial stress and strain
profiles, respectively, and repeated indices are summed
over. Further, x0 denotes the point where SijSij be-
comes maximal. Denoting by σi the Pauli matrices in
the TLS eigenbasis, the interaction between resonator
and TLS can be approximated by the JC Hamiltonian
HJC = (~∆T /2)σz + ~ωmb†b+ ~λ(σ+b+ σ−b

†), provided
that λ� ∆T ≈ ωm [35]. Here, the TLS-phonon coupling
λ is given by [39]

λ ≈ DT

~
∆0

∆T

(
~ωm

2EVm

)1/2

, (3)

where DT is the deformation potential [40, 41] and we
have neglected factors on the order of one due to the
exact position and orientation of the TLS.

In addition to strain, the TLS is also susceptible to
classical electromagnetic fields [24, 42]. It responds to a
coherent microwave drive of Rabi-frequency Ωµ accord-
ing to HTLS,µ = ~Ωµe

iωµtσ− + ~Ω∗µe
−iωµtσ+. On the

other hand, a static electric field E0 causes a change in
the asymmetry, δ∆ = 2p · E0/~, where p is the dipole
moment of the TLS, and thereby changes the splitting by
δ∆T = 2(∆/∆T )p · E0/~ and the coupling by a smaller
amount δλ = −2λ(∆/∆2

T )p·E0/~. Also in the case of ar-
tificial donor-acceptor based systems [34], similar tuning

Mechanical mode ωm/2π Vm λmax/2π NT

profile [GHz] [µm3] [MHz]

4 µm

0.46 13.46 0.13 0.93
2 µm

1.34 1.32 0.55 0.26

1 µm
5.0 0.01 10.76 0.08

TABLE I. Finite-element simulations of mechanical mode pro-
files for a radial breathing mode of a silica microsphere [43],
a pinch mode of a Si spoke-anchored microdisc [44], and a lo-
calized breathing mode of a Si photonic crystal nanobeam
[7] (from top to bottom). Here λmax is calculated using
Eq. (3) with DT = 1.4 eV [40], ∆0 = ∆T , and well-known
material properties [45]. NT ≈ 0.8~λmaxVT P̄ denotes the
number of relevant TLSs in a volume VT [39], i.e. those
within a bandwidth λ around ωm that have ∆0/∆T & 0.7.
P̄ = 1045 J−1m−3 is the spectral density [31]. For amorphous
silica VT equals the mode volume Vm, whereas for silicon, VT
corresponds to the relevant volume of the amorphous native
oxide layer [38].

can be afforded by external electric and magnetic fields.

In Table I we display the results of full finite-element
simulations of the mechanical modes of three differ-
ent OM structures. In addition to ωm, Vm and λ ∝√
ωm/Vm, we also show the number NT of TLSs that

couple resonantly and appreciably to the mechanical
mode. While NT . 1 is desirable in order not to cou-
ple to several TLSs, a value of NT � 1 can be com-
pensated by the above-mentioned tunability, which al-
lows shifting an off-resonant TLS into resonance with
the mechanical mode. In particular, already moder-
ate electric fields |E0| ∼ 103 V/m allow for shifts of
δ∆T /2π ∼ 1 MHz, where we used |p| ∼ 0.5 D [42] and
∆0/∆T ∼ 0.9. The TLS-phonon couplings λ estimated
in Table I clearly exceed the typical cryogenic mechanical
linewidth γm/2π ∼ 10 kHz realized in recent experiments
[7, 9]. On the other hand, typical TLS relaxation rates
γT /2π have been measured to be in the range 0.1−5 MHz
for GHz frequencies [40, 46], and experiments suggest
that they dominate over dephasing rates [46], which we
thus ignore in this work. Using the bulk value γT /2π ∼ 1
MHz at T ∼ 1K [24], we obtain λ/γT ∼ 10 for the case of
the nanobeam. The phonon density of states responsible
for TLS relaxation is strongly suppressed in the proposed
structures as compared to the bulk, which leads us to
consider these numbers a worst-case estimate.

We conclude from the above discussion and the results
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in Table I that strong coupling to individual defects is
feasible for suitably engineered OM systems. While the
couplings in the microsphere and microdisc structures
are on the verge of the strong coupling regime, the most
promising structure is the nanobeam. In the following,
we derive the signatures of the TLS-resonator interac-
tion in the OM output spectrum and show that the cou-
pling enables quantum state control of the mechanical
resonator in analogy to atomic cavity QED.

Optomechanical output spectrum.— In the absence of
the microwave drive (Ωµ = 0), the system is only driven
by thermal and vacuum fluctuations, as described by the
master equation

ρ̇ = − i
~

[H, ρ] + Lcρ+ Lmρ+ LT ρ , (4)

with Lindblad terms Lcρ = κD[a]ρ for the cavity, and

LT ρ = γT (n̄T + 1)D[σ−]ρ+ γT n̄TD[σ+]ρ, (5)

Lmρ = γm (n̄m + 1)D[b]ρ+ γmn̄mD[b†]ρ, (6)

for TLS and resonator, respectively [see also Fig. 1(c)].
Here, κ is the cavity energy decay rate, n̄m,T are the Bose
occupation numbers corresponding to an environment at
temperature T and D[x]ρ ≡ xρx†− (x†xρ−ρx†x)/2. We
consider the case where the three systems are in reso-
nance (−∆L ≈ ωm ≈ ∆T ), and where the cavity adia-
batically follows the resonator dynamics [κ� g, γT (n̄T +
1), γm(n̄m + 1)]. In this regime, the OM coupling leads
to cooling of the mechanical resonator and the TLS [35]:
For the case λ� κ of relevance in this work, the optically
induced mechanical damping rate A(−) ≈ 4g2/κ can ex-
ceed the corresponding heating rate A(+) ≈ g2κ/4ω2

m, as
well as the rethermalization rate γmn̄m. In addition, the
OM coupling transduces the resonator motion to the cav-
ity output, and thereby enables the observation of the hy-
bridized resonator-TLS subsystem by photodetection. In
particular, we consider here the cavity output spectrum
S(ω) = (κ/2π)

´∞
−∞ dτ e−i(ω−ωL)τ 〈a†(τ)a(0)〉ss, where

the angular brackets denote the average in the steady
state of Eq. (4).

In Figure 2 we display S(ω) for frequencies around
the blue sideband ωblue ≡ ωL + ωm as a function of
temperature. The spectra show transitions between the
levels of the JC Hamiltonian HJC formed by resonator
and TLS [dashed box in Fig. 1(c)]. In the case of ex-
act resonance (ωm = ∆T ), the ground state energy of
HJC is zero and the excited states |n±〉 have energies
ωn± = nωm ± λ

√
n (n = 1, 2, . . .), giving rise to the “JC

ladder” shown in Fig. 1(d). For T → 0 almost all popu-
lation is in the lowest states of the ladder, such that only
the transitions at ω = ωblue ± λ between the first rung
and the ground state are observed. As temperature in-
creases, higher states get populated, so that transitions
between higher rungs located at ω = ωL + ωnαβ , with
ωnαβ ≡ ωnα − ω(n−1)β (α, β = ±), also become visible
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FIG. 2. Fine-structure of the OM output spectrum S(ω)
around the blue sideband at ωblue as a function of temperature
and without a microwave drive field (Ωµ = 0). The dashed
line shows the cross-over temperature according to Eq. (8)
and the lower panels show cross sections at the temperatures
indicated by dotted lines in the top panels. Parameters are
ωm = 2π ·5 GHz, κ = 0.1ωm, λ = 2 ·10−3ωm, γm = 6 ·10−6ωm
and (a) g = λ, γT = λ/10, (b) g = λ/10, γT = λ/30.

in the output spectrum. Finally, above a certain cross-
over temperature Tc the spectrum consists of a single
Lorentzian peak, since the upper and lower branches of
the JC ladder resemble two independent highly excited
harmonic oscillators [47]. Note that below Tc, tempera-
ture actually helps to observe transitions between higher
rungs in the JC ladder.

To estimate Tc, we adiabatically eliminate the cavity
mode and calculate S(ω) using a secular approximation,
which is valid as long as the individual spectral lines do
not overlap [48]. The resulting blue sideband of S(ω) can
be approximated by a sum over Lorentzians lω(ω0, γ0) =
γ20/(γ

2
0 + (ω − ωL − ω0)2) [39], i.e.,

Sblue(ω) ≈
∞∑
n=1

∑
α,β=±

W blue
nαβ lω(ωnαβ , γnαβ/2) , (7)

where each term corresponds to a transition |nα〉 →
|(n− 1)β〉 centered at ω = ωL + ωnαβ . Since λ � κ,
the widths can be written as γnαβ = 2(n− 1)γ̄(n̄+ 1) +
2nγ̄n̄+γT (2n̄m+1), for n ≥ 2, and γ1α+ = γ̄(3n̄+1/2)+
γT (2n̄m+1/2). Here, γ̄ = γm+A(−)−A(+) is the effective
mechanical damping rate and n̄ = (n̄mγm +A(+))/γ̄ the
corresponding effective mean occupation, as known from
standard OM cooling [4, 5]. The weights in Eq. (7) are ex-
pressed in general as W blue

nαβ ≡ (2A(−)pnαB
2
nαβ)/(πγnαβ),

where pnα is the steady state population of the eigen-
state |nα〉. The JC matrix elements read B2

nαβ =

(2n− 1 + 2αβ
√
n(n− 1))/4, for n ≥ 2, and B2

1α+ = 1/2.
As temperature increases and population moves up the

JC ladder, transitions between the±-branches become ir-
relevant, while the ones within each branch occur closer
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FIG. 3. Optically probed phonon blockade. (a) g
(2)
c (0) of

the cavity as a function of drive frequency ωµ and tempera-
ture T for |Ωµ| = 0.1λ. All other parameters as in Fig. 2(a).

(b) g
(2)
c (0) of the cavity (solid) at temperatures indicated by

dashed lines in panel (a), and corresponding g
(2)
m (0) of the

resonator (dashed).

to ω = ωblue and thus contribute to the center of the spec-
trum. We define the cross-over point as the temperature
Tc where the separation of the two dominant Lorentzians
in Eq. (7) (at each side of ω = ωblue) equals their width,
i.e., where 2λ(

√
N −

√
N − 1) ≈ γN++, with N being

the index n for which W blue
n++ is maximal. If we further

restrict the parameters to a regime of experimental in-
terest: A(+) � γmn̄

c
m � A(−) . γT � λ and n̄cm � 1,

where n̄cm is the bath mean occupation at Tc, then the
cross-over criterion yields [39]:

Tc ≈
~ωm
kB

n̄cm ≈
~ωm
kB

(
λ

2γT

)2/3 (1 + 2A(−)/γT
)(

1 + 3A(−)/γT
)2/3 .

(8)
Naturally, Tc increases with increasing coupling λ and
decreases when increasing the TLS linewidth, but addi-
tionally Eq. (8) shows that Tc can be increased by en-
hancing the OM cooling rate A(−). The above estimate
for Tc agrees well with our numerical simulations, as can
be seen from Fig. 2 (dashed lines). For finite detuning
|ωm − ∆T | . λ of TLS and mechanics the general pic-
ture described above remains valid, although the spectra
generally become asymmetric.

Optically probed phonon blockade.— By driving the
TLS with a weak coherent microwave field (|Ωµ| � λ) we
can realize a phonon blockade in analogy to cavity QED
[49]: if the JC system is cooled to its ground state and the
drive is tuned to a transition |0〉 → |1±〉, then the sub-
sequent transition |1±〉 → |2±〉 is suppressed provided
that λ� γT , see Fig. 1(d). The resulting sub-Poissonian

resonator statistics (g
(2)
m (0) ≡ 〈b†b†bb〉/〈b†b〉2 < 1) per-

sist at finite T if exp (−~ωm/kBT )� |Ωµ|2/γ21±+, which
ensures that the thermal occupation is irrelevant com-
pared to the one due to the drive. Since the cavity op-
erator adiabatically follows the mechanics, i.e. a(t) ≈
−2ig/κ[b(t) − i(κ/4ωm)b†(t)] + noise [39], we have that

g
(2)
m (0) ≈ g

(2)
c (0) ≡ 〈a†a†aa〉/〈a†a〉2 to zeroth order in

(c)
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FIG. 4. Preparation of non-classical resonator states based
on Ref. [50]. (a) Level scheme with available tools and
(b) general sequence for preparation of a resonator arbitrary
state |Ψ〉 using OM cooling, strong TLS drive (|Ωµ| � λ),
free evolution (∼ λ), strong TLS AC-Stark shift δωT ∼
|Ωµ|2/|ωµ − ∆T | � λ, and TLS-resonator detuning. (c)
Fidelity F = 〈ΨM |ρ(tf )|ΨM 〉 as a function of temperature
and for increasing M from top to bottom. Dashed curves:
M = 1, 2, 3 and parameters as in Fig. 2(a). Solid curves:
M = 1, 2, 3, 4, 7, 9 and parameters as before, except for
γT = λ/30. The OM interaction is switched off after the
initial cooling.

κ/ωm � 1, such that the phonon blockade can be probed

optically. Figure 3(a) displays g
(2)
c (0) of the cavity as a

function of drive frequency and temperature. For low
T , one clearly observes the expected anti-bunching at
ωµ = ωm ± λ, while these features disappear for higher
T due to thermal occupation of the JC ladder. As can
be seen from the cuts presented in Fig. 3(b), the g(2)(0)-
function of the cavity is an upper bound for the one of
the resonator in the region of pronounced anti-bunching

and therefore, an optical g
(2)
c (0) < 1 indicates phonon

blockade.

Preparation of non-classical states.— The possibility
to electrically tune and coherently drive the TLS, to-
gether with the strong coherent coupling between TLS
and resonator gives rise to the prospect of determinis-
tically preparing quantum states by suitable protocols.
As an example, we propose preparing the system close
to its ground state by OM cooling and then generat-
ing a non-classical resonator state by a scheme analo-
gous to the one of Ref. [50]. The necessary sequence is
illustrated in Figs. 4(a,b), and as an example we plot in
Fig. 4(c) the resulting fidelities for preparing the states
|ΨM 〉 ≡ (|0〉+ |M〉) /

√
2 (M = 1, 2, ...), in the presence

of imperfections. Clearly, the fidelity decreases with in-
creasing M and T . However, already for λ/γT = 10 one
can achieve F > 0.95 for temperatures around 100mK,
which constitutes an exciting avenue for OM systems in
existence today.
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