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The astrophysical S-factor for proton-proton weak capture is calculated in chiral effective field
theory over the center-of-mass relative-energy range 0–100 keV. The chiral two-nucleon potential
derived up to next-to-next-to-next-to leading order is augmented by the full electromagnetic interac-
tion including, beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy
constants (LEC’s) entering the weak current operators are fixed so as to reproduce the A = 3
binding energies and magnetic moments, and the Gamow-Teller matrix element in tritium β decay.
Contributions from S and P partial waves in the incoming two-proton channel are retained. The
S-factor at zero energy is found to be S(0) = (4.030 ± 0.006) × 10−23 MeV fm2, with a P -wave
contribution of 0.020× 10−23 MeV fm2. The theoretical uncertainty is due to the fitting procedure
of the LEC’s and to the cutoff dependence.

PACS numbers: 25.10.+s, 26.20.Cd, 21.30.Fe

The proton weak capture on protons, i.e., the reaction
1H(p, e+νe)

2H (hereafter labelled pp), is the most funda-
mental process in stellar nucleosynthesis: it is the first
reaction in the pp chain, which converts hydrogen into
helium in main sequence stars like the Sun. Its reaction
rate is expressed in terms of the astrophysical S-factor,
S(E), where E is the two-proton center-of-mass (c.m.)
energy. At the center of light stars like the Sun, with
temperature of the order of 1.5×107 K, the Gamow peak
is at E ≃ 6 keV. At these energies, the reaction cross sec-
tion cannot be measured in terrestrial laboratories, and it
is necessary to rely on theoretical predictions, which are
typically given for S(0)—the zero-energy value of the S-
factor. The many studies on S(0) have been extensively
reviewed in Ref. [1], and are succinctly summarized next.

The currently recommended value for S(0), (4.01 ±
0.01) × 10−23 MeV fm2 [1], is the average of values ob-
tained within three different approaches, labelled “poten-
tial models” (PM), “hybrid chiral effective field theory”
(χEFT*) and “pionless effective field theory” (\πEFT).
The first one uses phenomenological realistic models for
the nuclear potential, fitted to reproduce the large body
of two-nucleon (NN) bound and scattering state data
with a χ2/datum ∼ 1. The axial current operator in-
cludes both one-body terms, determined from the cou-
pling of the single nucleon to the weak probe, and two-
body terms, derived from meson-exchange mechanisms
and the excitation of ∆-isobar resonances. These two-
body terms are constrained to reproduce the experimen-
tal value of the Gamow-Teller (GT) matrix element of
tritium β-decay.

In the hybrid approach, transition operators derived
in χEFT are sandwiched between initial and final wave
functions generated by potential models. The only un-
known low-energy constant (LEC), which parametrizes

the strength of a contact-type four-nucleon coupling to
the axial current, is determined by fitting the experimen-
tal GT matrix element.
Finally, \πEFT is an effective field theory approach ap-

plicable to low-energy processes—such as the pp reaction
under consideration here—with a characteristic momen-
tum Q much smaller than the pion mass mπ. In such a
theory, pions are integrated out and the NN interaction
and weak currents are described by classes of point-like
contact interactions, each class corresponding to given
order in a systematic expansion in powers of Q/mπ.
The energy-dependence of S(E) in the pp capture

(and other reactions as well in the pp chain) is often
parametrized as [1]

S(E) = S(0) + S′(0)E + S′′(0)E2/2 + · · · , (1)

where S′(0) and S′′(0) are the first and second derivatives
of S(E), evaluated at E = 0. For S′(0) and S′′(0) the
situation is much less clear than for S(0). The adopted
value for S′(0) in Ref. [1] is S′(0)/S(0) = (11.2 ± 0.1)
MeV−1, as obtained in Ref. [2] and later confirmed in
Ref. [3] in a PM approach. No value is reported for S′′(0)
in Ref. [1]. In Ref. [2] it was estimated by dimensional
considerations that the contribution of S′′(0) to the pp
rate would be at the level of 1% for temperatures charac-
teristic of the solar interior. Only very recently, S′(0) and
S′′(0) have been calculated in \πEFT [4] to the third-order
in the power expansion with the results S′(0)/S(0) =
(11.3± 0.1) MeV−1 and S′′(0)/S(0) = (170± 2) MeV−2.
In conclusion, a systematic study of S(E) in (pionfull)
χEFT is still missing. We address this omission in the
present letter.
The NN potential is that derived in χEFT up to next-

to-next-to-next-to leading order (N3LO) in the chiral ex-
pansion by Entem and Machleidt [5, 6]. However, in the
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pp sector, it is augmented by the inclusion of higher-order
electromagnetic terms, due to two-photon exchange and
vacuum polarization. These higher-order terms are the
same as those of the Argonne v18 (AV18) NN poten-
tial [7], and therefore also retain short-range corrections
associated with the finite size of the proton charge dis-
tribution. The additional distortion of the pp wave func-
tion, induced primarily by vacuum polarization, has been
shown to reduce S(0) by ∼ 1% in Ref. [3].

The charge-changing weak current has been derived up
to N3LO in Ref. [8]. Its polar-vector part is related, via
the conserved-vector-current constraint, to the (isovec-
tor) electromagnetic current, and includes, apart from
one- and two-pion-exchange terms, two contact terms—
one isoscalar and the other isovector—whose strengths
are parametrized by the LEC’s g4S and g4V . The two-
body axial-vector current includes terms of one-pion
range as well as a single contact current, whose strength
is parametrized by the LEC dR. The latter is related to
the LEC cD, which, together with cE , enters the three-
nucleon (NNN) potential at next-to-next-to leading or-
der (N2LO), as illustrated in Fig. 1.

These chiral potentials and currents have power-law
behavior in momentum space, and must be regularized
before they can be used in practical calculations. This
is accomplished by multiplying them by a momentum-
cutoff function, whose cutoff Λ is taken to be in the range
(500–600) MeV. Finally, we should note that inclusion of
such a cutoff spoils the requirement of conserved-vector
and partially-conserved-axial currents. In particular, we
note that the construction of a conserved vector current
with the N3LO NN potential used here would require
accounting for two-loop corrections, a task well beyond
the present state of the art.

The LEC’s cD (or dR), cE , g4S and g4V are determined
with the procedure discussed in Ref. [9]. First, the val-
ues of the LEC’s {cD, cE} which reproduce the A = 3
binding energies are obtained for both Λ = 500 and 600
MeV, with cD in the range (−3, 3). Next, within this
range, the GT matrix element is calculated and cD (or
equivalently dR) is fixed to reproduce its experimental
value. The range of cD values, for which the calculated
GT matrix element is within the lower and upper limits
of its experimental determination, are (−0.20,−0.04) for
Λ = 500 MeV, and (−0.32,−0.19) for Λ = 600 MeV. The
corresponding ranges for cE are (−0.208,−0.184) and
(−0.857,−0.833), respectively [9]. Lastly, for the min-
imum and maximum values of {cD, cE} and the given Λ,
the isoscalar and isovector LEC’s g4S and g4V are deter-
mined by reproducing the A = 3 magnetic moments. The
values for all the LEC’s are listed in Table I of Ref. [9]. In-
deed, in that work it was shown that the consistent χEFT
approach outlined above leads to predictions (with an es-
timated theory uncertainty of about 1%) for the rates of
muon capture on deuteron and 3He, that are in excellent
agreement with the experimental data.
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FIG. 1: One-pion exchange plus NN contact, and NNN
contact terms entering the three-nucleon potential at N2LO,
and the contact term entering the NN axial current. Solid,
dashed, and wavy lines represent, respectively, the nucleon,
pion, and external probe.

All earlier studies of the pp capture we are aware of
(see Ref. [1] and references therein) have only considered
the 1S0 channel in the initial pp scattering state. Since
one of the objectives of the present work is to study the
energy dependence of the S-factor up to E=100 keV,
we include, in addition to the 1S0, the P -wave channels
3P0,

3P1, and 3P2. We outline the calculation in the
following, deferring a more extended discussion of it to a
later paper [10].
The pp weak capture cross section σ(E), from which

the S-factor is obtained as S(E) = E exp(2π η)σ(E) (η =
α/vrel, α being the fine structure constant and vrel the
pp relative velocity), is written in the c.m. frame as

σ(E) =

∫
2πδ(∆m+ E − q2

2md

− Ee − Eν)
1

vrel

× F (Z,Ee)
1

4

∑
se sν

∑
s1 s2 sd

|〈f |HW |i〉|2 dpe

(2π)3
dpν

(2π)3
, (2)

where ∆m = 2mp − md (mp and md are the proton
and deuteron masses, respectively), pe (pν) and Ee (Eν)
are the electron (neutrino) momentum and energy, q =
pe + pν is the momentum transfer, and F (Z,Ee) is the
Fermi function (with Z = 1), which accounts for the
Coulomb distortion of the final positron wave function.
Its explicit expression can be found in Ref. [11], increased
by 1.62% to take into account radiative corrections to the
cross section [12]. The transition amplitude is given by

〈f |HW |i〉 = GV√
2
lσ〈−q; d|j†σ|p; pp〉 , (3)

where GV is the Fermi constant (GV = 1.14939× 10−5

GeV−2 [13]), | − q; d〉 and |p; pp〉 represent, respectively,
the deuteron bound state with recoiling momentum −q

and the pp scattering state with relative momentum p,
and lσ and jσ(q) are the leptonic and nuclear weak cur-
rents, respectively. A standard multipole decomposition
of the nuclear weak current operator leads to [14]

1

4

∑
se sν

∑
s1 s2 sd

|〈f |HW |i〉|2 = (2π)2G2
V LστN

στ , (4)

where the lepton tensor Lστ is written in terms of elec-
tron and neutrino four velocities, and the nuclear tensor
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is defined as

Nστ =
∑

s1 s2 sd

W σ(q; s1s2sd)W
τ∗(q; s1s2sd) , (5)

with

W σ=0,3(q; s1s2sd) =
∑

LSJ;Λ≥0

XLSJΛ
0 (q̂; s1s2sd)T

LSJ
Λ (q),(6)

W σ=λ(q; s1s2sd) = − 1√
2

∑
LSJ;Λ≥1

XLSJΛ
−λ (q̂; s1s2sd)

× [λMLSJ
Λ (q) + ELSJ

Λ (q)] , (7)

where λ = ±1 denote spherical components. The spin-
quantization axis for the hadronic states is taken along
the direction p̂ of the pp relative momentum. The func-
tions XLSJΛ

λ=0,±1(q̂; s1s2sd) depend on the direction q̂, the
proton and deuteron spin projections s1, s2 and sd,
and we have used the notation TLSJ

Λ (q) = CLSJ
Λ (q)

or LLSJ
Λ (q) for σ = 0 or 3. The quantities CLSJ

Λ (q),
LLSJ
Λ (q), MLSJ

Λ (q) and ELSJ
Λ (q) are, respectively, the re-

duced matrix elements (RME’s) for the Coulomb, longi-
tudinal, transverse magnetic and transverse electric mul-
tipole operators between the initial pp state with orbital
angular momentum L, channel spin S (S = 0, 1), to-
tal angular momentum J , and the final deuteron state
with total angular momentum Jd = 1. The number Λ in
Eqs. (6) and (7) is the multipole order, with Λ+J = Jd.
The integrations over pe and pν are performed by Gaus-
sian quadratures [14], and a moderate number of Gauss
points (∼ 10–20 for each integration) suffices to achieve
convergence to within better than 1 part in 103.
The two-body wave functions corresponding to the

non-local chiral potentials of Refs. [5, 6] have been
obtained variationally with the technique described in
Ref. [15]. In the present work, there is the complica-
tion due to the presence, in the pp sector, of higher-order
corrections (from two-photon exchange and vacuum po-
larization) in the electromagnetic potential vem(r). We
proceed in the following way. We first calculate the regu-
lar and irregular solutions corresponding to vem(r) only
by direct integration of the the Schrödinger equation—
these are denoted as Ω(R) and Ω(I). We then expand the
pp continuum wave function in channel α ≡ LSJJz as

Ψα =
∑
µ

cαµΨ
α
µ +Ω(R)

α +
∑
α′

Rαα′ Ω
(I)
α′ , (8)

where Ψα
µ are known functions written as product of La-

guerre polynomials (see Eq. (3.1) of Ref. [15]), which van-
ish at large inter-particle separations. Clearly, the depen-
dence on the NN potential enters only in the unknown
coefficients cµ and matrix elements Rαα′ , which are de-
termined via the Kohn variational principle. A system of
linear inhomogeneous equations for the cµ’s and a set of
algebraic equations for the Rαα′ ’s result, which are solved
by standard techniques. From the Rαα′ ’s, phase shifts

and mixing angles are easily obtained. We have verified
that, in the case of the AV18, the method outlined above
leads to 1S0 phase shifts in agreement with those reported
for the AV18 in Ref. [7] (which included the same vem(r)
used here). We have also verified that we are able to re-
produce the N3LO phase shifts of Ref. [6], obtained by
including only the Coulomb potential in vem(r). Further
details will be reported in a later publication [10].

The cumulative S- and P -wave contributions to the
astrophysical S-factor at zero energy are listed in Ta-
ble I. Inspection of the table shows that: (i) the cut-
off dependence is negligible as is the overall theoreti-
cal uncertainty (well below 1%) due to the procedure
adopted to fit the LEC’s entering the current; (ii) the
P -wave contributions to S(0) sum up to ∼ 1% of the
total value; (iii) the results can be summarized in the
conservative range S(0) = (4.030± 0.006)× 10−23 MeV
fm2. For comparison, we have also calculated S(0) within
the PM approach, using the AV18 potential and the
same model for the nuclear current of Refs. [3, 14, 15],
obtaining S(0) = (4.033 ± 0.003) × 10−23 MeV fm2

(S(0) = (4.000± 0.003)× 10−23 MeV fm2) when all the
S- and P -waves (only the 1S0 channel) are included. The
agreement between the PM and χEFT results is excel-
lent. Finally, it should be noted that the 1S0 S-factor, in
units of 10−23 MeV fm2, obtained with the pure Coulomb
interaction, is 4.025 when Λ = 500 MeV, and 4.030 within
the PM approach with the AV18. Therefore, while the
full electromagnetic interaction accounts for a ∼ 1% re-
duction in S(0), this effect is in practice offset by the
P -wave contributions.

TABLE I: Cumulative S- and P -wave contributions to the
astrophysical S-factor at zero c.m. energy in units of 10−23

MeV fm2. The theoretical uncertainties are given in paren-
theses and are due to the fitting procedure adopted for the
LEC’s in the weak current. The results have been obtained
with the two different cutoff values Λ = 500 and 600 MeV.

1S0
3P0

3P1
3P2

Λ=500 MeV 4.008(5) 4.011(5) 4.020(5) 4.030(5)
Λ=600 MeV 4.008(5) 4.010(5) 4.019(5) 4.029(5)
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FIG. 2: (Color online) The astrophysical S-factor as function
of the c.m. energy in the range 0–100 keV. The S- and (S +
P )-wave contributions are displayed separately. In the inset,
S(E) is shown in the range 3–15 keV.



4

The energy dependence of S(E) is shown in Fig. 2.
The S- and (S+P )-wave contributions are displayed sep-
arately, and the theoretical uncertainty is included—the
curves are in fact very narrow bands. As expected, the
P -wave contributions become significant at higher values
of E.

TABLE II: Values for Sn(0)/S(0) with n = 1–4, in units of
MeV−n, and the χ2 as defined in the text, obtained with a
polynomial fit of S(E) up to orders O(E2) (Fit 1), O(E3) (Fit
2), and O(E4) (Fit 3), retaining all (S+P )-waves. The results
obtained by retaining only the S channel are listed separately
for Fit 1 and 2. Also listed are the results of Ref. [4]. The
theoretical uncertainties, listed only for n = 1, 2, 3, are given
in parentheses and account for the cutoff sensitivity and the
errors due to the LEC’s fitting procedure.

n 1 2 3 4 χ2

Fit 1 12.59(1) 199.3(1) 8.8×10−4

Fit 2 11.94(1) 248.8(2) –1183(8) 1.9×10−4

Fit 3 11.34(1) 327.1(5) –5592(12) 99 ×103 2.0×10−5

S - Fit 1 12.23(1) 178.4(3) 1.2×10−3

S - Fit 2 11.42(1) 239.6(5) –1464(5) 1.9×10−4

S - Ref. [4] 11.3(1) 170(2) 4.7×10−1
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FIG. 3: (Color online) The astrophysical S-factor in the en-
ergy range 0–100 keV, calculated with Λ = 500 MeV and
cD = −0.20 and including the S- and (S + P )-wave contri-
butions is compared with the cubic polynomial fit and the
quadratic fit of Ref. [4]. In the inset, S(E) is shown in the
range 3–15 keV.

Next, we examine the question of whether the poly-
nomial approximation for S(E) given in Eq. (1) is jus-
tified. To this end, we have performed a least-squares
polynomial fit to S(E) up to order O(E2), i.e., by using
Eq. (1) itself, and up to order O(En), by adding terms
Sn(0)En/n!, with n = 3, 4 (Sn(0) is the n-th derivative
of S(E) evaluated at E = 0). The values for Sn(0), with
n = 1–4, are listed in Table II, along with the χ2 value,
which we define as the sum over all the energy grid values
of the “normalized” residuals, χ2 =

∑
i(1− ffit

i /f calc
i )2,

where f calc
i (ffit

i ) are the calculated (fitted) S(E) re-
sults. By inspection of the table, we conclude that the
values of Sn(0) are strongly dependent on the order of
the polynomial function. However, an accurate descrip-
tion of the data can be obtained with a desired degree of

accuracy by increasing the number of polynomial terms.
With a cubic fit, for instance, χ2 ∼ 10−4 indicates that
the calculated S(E) values are nicely reproduced. This
can be appreciated also in Fig. 3, where the cubic fit is
compared with the results for S(E) obtained retaining
all (S+P )-waves or only the 1S0 channel, using Λ = 500
MeV with one particular value of cD (cD = −0.20). The
curve obtained using Eq. (1) with the values for S(0),
Sn=1(0) and Sn=2(0) of Ref. [4] is also shown. For ener-
gies up to 15 keV, the differences between our 1S0 results
and those of Ref. [4] are very small. However, at energies
of 25–30 keV or higher, the quadratic fit of Ref. [4] starts
to be significantly different from the calculated values, as
well as from the cubic fit.

Finally, using the results corresponding to the cubic
fit in Table II, we have calculated that the linear and
quadratic contributions to S(E) at the solar Gamow
peak are of the order of 7% and 0.5%, respectively, while
the cubic one is negligible. This is in agreement with
Refs. [2, 4]. On the other hand, for larger-mass stars,
whose central temperature is of the order of 5×107 K and
the Gamow peak is at E ∼ 15 keV, the linear, quadratic
and cubic contributions become of the order of 18%, 3%
and 0.7%, respectively.
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