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We optimize the nucleon-nucleon interaction from chiral effective field theory at next-to-next-
to-leading order. The resulting new chiral force NNLOopt yields χ2 ≈ 1 per degree of freedom for
laboratory energies below approximately 125 MeV. In theA = 3, 4 nucleon systems, the contributions
of three-nucleon forces are smaller than for previous parametrizations of chiral interactions. We use
NNLOopt to study properties of key nuclei and neutron matter, and we demonstrate that many
aspects of nuclear structure can be understood in terms of this nucleon-nucleon interaction, without
explicitly invoking three-nucleon forces.
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Introduction – Interactions from chiral effective field
theory (EFT) employ symmetries and the pattern of
spontaneous symmetry breaking of quantum chromody-
namics [1, 2]. In this approach, the exchange of pi-
ons within chiral perturbation theory yields the long-
ranged contributions of the nuclear interaction, while
short-ranged components are included as contact terms.
The interaction is parametrized in terms of low-energy
constants (LECs) that are determined by fit to exper-
imental data. The interactions from chiral EFT ex-
hibit a power counting in the ratio Q/Λ, with Q being
the low-momentum scale being probed and Λ the cut-
off, which is of the order of 1 GeV. At next-to-next-to-
leading order (NNLO), three-nucleon forces (3NFs) enter,
while four-nucleon forces (4NFs) enter at next-to-next-
to-next-to-leading order (N3LO). For laboratory energies
below 125 MeV, the nucleon-nucleon (NN) force exhibits
a quality of fit with χ2 ≈ 10/datum at NNLO [3], while a
high-precision potential N3LOEM, with a χ2 ≈ 1/datum
up to 290 MeV, was obtained by Entem and Machleidt
[2, 4].

The 3NFs at NNLO that accompany the current N3LO
NN potentials play a pivotal role in nuclear structure
calculations [5]. They determine the ground-state spin of
10B [6], correctly set the drip line in oxygen isotopes [7, 8],
and make 48Ca a doubly magic nucleus [9, 10]. While it
might seem surprising that smaller corrections at NNLO
are so decisive for basic nuclear structure properties, the
3NF contains spin-orbit and tensor contributions that
clearly are important for the currently employed chiral
interactions. The contributions of 3NFs at N3LO have
also been worked out [11, 12], and there are on-going
efforts to compute even higher orders [13].

While the quest for higher orders is important, this ap-
proach will result in higher accuracy only if the optimiza-
tion at lower orders was carried out accurately. Thus, it
is important and timely to revisit the optimization ques-
tion. We note in particular that the fits of the currently
employed chiral interactions [3, 4, 14] date back about
a decade and that there has been a considerable recent
progress in developing tools for the derivative-free non-
linear least-squares optimization [15]. Furthermore, the
quantification of theoretical uncertainties is a long-term
objective of nuclear structure theory, and this requires
a covariance analysis of the interaction parameters with
respect to the experimental uncertainties of the nucleon-
nucleon elastic scattering observables; see, for example,
Refs. [15, 16]. This letter takes the first step toward
this goal. We present a state-of-the-art optimization of
the NN chiral EFT interaction at NNLO. This yields
a much-improved χ2 and a high-precision NN potential
NNLOopt. The 3NF at NNLO is adjusted to the bind-
ing energies in A = 3, 4 nuclei. We present computations
of three-nucleon and four-nucleon bound states, and we
employ NNLOopt to ground states and excited states in
10B, masses and excited states of oxygen and calcium
isotopes, and neutron matter.

Optimizing the NN interaction at NNLO – For the op-
timization of the chiral NN interaction we use the Prac-
tical Optimization Using No Derivatives (for Squares) al-
gorithm, POUNDerS [15], as implemented in [17]. This
derivative-free algorithm employs a quadratic model and
is particularly useful for computationally expensive ob-
jective functions. We optimize the three pion-nucleon
(πN) couplings (c1, c3, c4), and 11 partial wave contact
parameters C and C̃, while we keep the axial-vector cou-
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pling constant gA, the pion-decay constant fπ, and all
masses fixed. In the optimization, we minimize the ob-
jective function

f(~x) =

Nq∑
q=1

(
δNNLO
q (~x) − δNijm93

q

wq

)2

, (1)

where δNNLO are NNLO phase shifts, δNijm93 are ex-
perimental phase shifts from the Nijmegen multi-energy
partial-wave analysis [18], ~x denotes the parameters of
the chiral interaction, and wq are weighting factors. Note
that Eq. (1) is not the χ2 with respect to experimen-
tal data. The actual χ2 is calculated following the
POUNDerS optimization. The phase shifts δNNLO are
computed from R-matrix inversion, and in the proton-
proton (pp) channels we include the Coulomb interac-
tion [19, 20]. The contact terms are optimized to re-
produce the Nijmegen phase shifts for each correspond-
ing partial wave, while keeping the ci’s fixed. For the
contacts, the weight wq scales with the third power of
the relative momentum q, while for the ci’s, we em-
ploy the uncertainties quoted in the Nijmegen analy-
sis [18]. This approach can be justified by a physi-
cal argument: for the peripheral waves the higher en-
ergies still represent longer-range physics, and the need
for a pedantic agreement with lower energy phase shifts
can be weakened. The πN couplings c1, c3, and c4
were simultaneously optimized to the peripheral partial-
waves 1D2,

3D2,
3F2, E2,

3F3,
1G4, and 3F4. Note that

the NNLO contact terms do not contribute to orbital
angular momenta L ≥ 2. We do not include other pe-
ripheral waves from the Nijmegen study since they carry
extremely small uncertainties, which lead to a very noisy
objective function.

Table I summarizes the optimization results. Our val-
ues should be compared with the πN couplings as deter-
mined from πN scattering data, where c1 = −0.81±0.15,
c3 = −4.69 ± 1.34, and c4 = +3.40 ± 0.04 have been ob-
tained [21]. Thus, POUNDerS yields values for c1 and c3
that agree well with the empirical determination from πN
scattering. The c4 value, however, deviates significantly
from its empirical value. The same trend was found in
the construction of the N3LO [4] NN interaction. A
detailed statistical sensitivity analysis of the LECs with
uncertainty quantification will be presented in Ref. [22].

Table II shows the χ2/datum for NNLOopt at various
laboratory energy bins. The quality of the fit is particu-
larly good for energies below 125 MeV. For comparison,
the np NNLO interaction of Ref. [3] yields χ2/datum of
12–27 in the range Λ = 600/700− 450/500 MeV at ener-
gies up to 290 MeV.

Around energies of 144 MeV there exist two data sets
of pp differential cross sections with a very high precision
(0.5% error) [25] (47 data points). The total number
of pp data in the energy interval 125–183 MeV is 343.

TABLE I. Parameters of NNLOopt at Λ = 500 MeV and
ΛSFR = 700 MeV [3, 23]: ci (in GeV−1), C̃ (in 104 GeV−2),
and C (in 104 GeV−4). The number of decimal digits in the
parameters ensure that the phase shifts, in degrees, are com-
puted with a four decimal digit precision.

LEC Value LEC Value LEC Value

c1 -0.91863953 c3 -3.88868749 c4 4.31032716

C̃pp
1S0

-0.15136604 C̃np
1S0

-0.15214109 C̃nn
1S0

-0.15176475

C1S0
2.40402194 C3S1

0.92838466 C̃3S1
-0.15843418

C1P1
0.41704554 C3P0

1.26339076 C3P1
-0.78265850

C3S1−3D1
0.61814142 C3P2

-0.67780851

TABLE II. χ2/datum for NNLOopt at Λ = 500 MeV and
ΛSFR = 700 MeV [3, 23] with respect to the np and pp 1999
databases [24]. The values without the high-precision data
sets [25] are marked by asterisks.

Tlab (MeV) 0–35 35–125 125–183 183–290 0–290

pp χ2/datum 1.11 1.56

{
23.95
4.35∗ 29.26

{
17.10
14.03∗

np χ2/datum 0.85 1.17 1.87 6.09 2.95

The unusual precision of those 47 data points distorts
the χ2/datum for this interval. For this reason, Table II
also shows the results without the high-precision data.

Two comments are in order. First, the χ2 with respect
to scattering observables is lower when the 1P1 phase
shifts are weighted with the uncertainties from the Ni-
jmegen analysis. The P -waves are accurately reproduced
only when going to N3LO [4]. Second, the 3S1−3D1 cou-
pled channel is optimized with the additional constraint
of reproducing the deuteron binding energy. The remain-
ing deuteron observables, as well as the 1S0 scattering
observables, are predictions and reproduce the experi-
mental values well; see Table III.

Figure 1 shows some np phase shifts of NNLOopt and
compares them with phase shifts from other potentials
and partial wave analyses. Apart from the 3P -waves,
the phase shifts of NNLOopt closely agree with those ob-
tained at N3LO. Note, however, that these deviations
do not spoil the good χ2 at laboratory energies below
125 MeV.

Three-nucleon forces also appear at NNLO, and two
additional LECs (cD and cE) enter. These are deter-
mined from calculations in the three-nucleon and four-
nucleon systems. We find that the binding energies of 3H,
3He, and 4He do not uniquely determine cD and cE , and
the parametric dependence of both LECs is very similar
to those found in previous studies [6, 33, 34]. Therefore,
we choose cD = −0.2 guided by the triton half life [34]
and obtain cE = −0.36 from optimization to the binding
energies. The resulting point charge radii of 4He are also
in good agreement with experiment; see Table IV.

Performance of NNLOopt for light- and medium-mass
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TABLE III. Scattering lengths a and effective ranges r (both
in fm). The superscripts N and C for the proton-proton
observables refer to nuclear forces and Coulomb-plus-nuclear
forces, respectively. BD, rD, QD, and PD denote the deuteron
binding energy, radius, quadrupole moment, and D-state
probability, respectively. QD and rD are calculated without
meson-exchange currents and relativistic corrections.

N3LOEM NNLOopt Exp. Ref.

aCpp -7.8188 -7.8174
-7.8196(26) [26]
-7.8149(29) [27]

rCpp 2.795 2.755
2.790(14) [26]
2.769(14) [27]

aNpp -17.083 -17.825
rNpp 2.876 2.817
ann -18.900 -18.889 -18.95(40) [28, 29]
rnn 2.838 2.797 2.75(11) [30]
anp -23.732 -23.749 -23.740(20) [24]
rnp 2.725 2.684 2.77(5) [24]

BD (MeV) 2.224575 2.224582 2.224575(9) [24]
rD (fm) 1.975 1.967 1.97535(85) [31]
QD (fm2) 0.275 0.272 0.2859(3) [24]
PD (%) 4.51 4.05
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FIG. 1. (Color online) Computed np phase shifts of the opti-
mized NNLO potential of this work (red), the NNLO potential
of Ref. [3] (dashed, blue), and the N3LO potential [4] (green,
dotted) compared with the Nijmegen phase shift analysis [18]
(solid dots) and the VPI/GWU analysis SM99 [32] (open cir-
cles).

nuclei and neutron matter – In this paper, we apply
NNLOopt to 10B, isotopes of oxygen and calcium, and
neutron matter. The considered systems are particularly
interesting because the current NN chiral interactions
at N3LO completely fail to describe key aspects of their
structure.

To study the ground- and first excited state in 10B, we

TABLE IV. Ground-state energies (in MeV) and point proton
radii (in fm) for 3H, 3He, and 4He using the NNLOopt with
and without the NNLO 3NF interaction for cD = −0.20 and
cE = −0.36.

E(3H) E(3He) E(4He) rp(4He)
NNLO -8.249 -7.501 -27.759 1.43(8)

NNLO+NNN -8.469 -7.722 -28.417 1.43(8)
Experiment -8.482 -7.717 -28.296 1.467(13)

carry out no-core shell model (configuration interaction)
calculations [35] using the bare NNLOopt in model spaces
of up to Nmax = 10 harmonic oscillator (HO) shells
(10 ~Ω) above the unperturbed configuration. These
model spaces are not large enough to provide fully con-
verged results for the ground state and first excited state
of 10B. Still, the variational upper bounds for the ener-
gies are −54.35 MeV for the 1+ state and −54.32 MeV for
the 3+ state. The energies are very close, in contrast to
N3LOEM, which yields a level spacing of about 1.2 MeV
between the Jπ = 1+ ground state and the Jπ = 3+

excited state [6].

Chiral NN interactions at N3LO fail to explain the
neutron drip-line in oxygen isotopes, and 3NFs have been
the key element for understanding the structure of nu-
clei around 24O [7, 8]. Figure 2 shows the experimental
ground-state energies of oxygen isotopes and compares
the results from coupled-cluster (CC) computations in
the Λ triples approximation [36–38]. Our CC calculations
employ a Hartree-Fock basis (HF) built from Nmax = 15
HO shells at ~Ω = 20 MeV. Because of the “softness” of
NNLOopt, this model space is sufficiently large to con-
verge the ground states and excited states of the nu-
clei considered. In addition, we performed shell-model
(SM) calculations assuming the closed 16O core with an
effective interaction derived from many-body perturba-
tion theory to third order in the interaction and includ-
ing folded diagrams [39]. For the SM calculations, the
single-particle energies were taken from the experimen-
tal 17O spectrum. In both CC and SM, NNLOopt results
are close to experiment. In contrast, the N3LOEM case
requires 3NFs to provide reasonable description of mea-
sured values.

Now we consider the heavy isotopes of calcium. Here,
48Ca is doubly magic, 52Ca exhibits a soft subshell clo-
sure, and 54Ca is predicted to have an even softer subshell
closure [10]. A signature of shell closure is the location of
the first 2+ state. We employed CC equation-of-motion
methods within the singles and doubles approximation
[38, 40] to compute the first 2+ state in the calcium iso-
topes. Figure 3 shows that N3LOEM fails to describe
the location of the first 2+ state in 40,48,50,52,54,56Ca.
In contrast, NNLOopt yields 48Ca as a doubly magic
nucleus and predicts subshell closures in 52,54Ca. The
NNLOopt overbinds the calcium isotopes by about 1 MeV
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FIG. 2. (Color online). The ground-state energies of oxygen
isotopes obtained in CC with the NNLOopt and N3LOEM in-
teractions compared with experiment. The inset shows SM
results.
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FIG. 3. (Color online). The first 2+
1 state in selected calcium

isotopes obtained in CC with the NNLOopt and N3LOEM in-
teractions compared with experiment.

per nucleon. In particular 40,48,52Ca are overbound by
1.03 MeV, 1.06 MeV, and 1.04 MeV per nucleon, respec-
tively. That is, the excess energy per nucleon is fairly con-
stant; hence, NNLOopt reproduces binding energy differ-
ences, such as neutron-separation energies and low-lying
excited states, rather well.

The complete description of nuclei at NNLO also
requires 3NFs. We computed the first 2+ state in
22,24O and in 48Ca with the 3NF compatible with the
NNLOoptinteraction. The matrix elements of the 3NF
are expensive computationally, and we must at present
limit their calculation to three-body energies up to
e3max = 2na + la + 2nb + lb + 2nc + lc = 14. (Recall
that we employ 15 major harmonic oscillator shells for
the NN interaction.) We also used the normal ordered
two-body approximation for the 3NF [41, 42] with respect

to a HF reference. With the restriction of e3max = 14,
we were not able to obtain fully converged results for the
binding energies of oxygen and calcium isotopes. How-
ever, excitation energies relative to the ground state con-
verge somewhat better. Our results for the first 2+ state
in 22,24O and in 48Ca are 2.3(3) MeV, 3.5(5) MeV and
4.8(7) MeV, respectively. We estimate the uncertainty
by varying ~Ω in the interval 16–22 MeV. The results ob-
tained by using NNLOopt NN interaction alone yields
2.5 MeV, 5.0 MeV, and 4.5 MeV in 22,24O and 48Ca, re-
spectively. These preliminary results suggest that the
3NFs may not dramatically change the results that were
obtained with the NNLOopt NN interaction alone.

It is instructive to compare the predictions of NNLOopt

and N3LOEM for the neutron matter equation of state
at sub-saturation densities with the results of ab-initio
calculations of Refs. [43]. Figure 4 shows that the per-
formance of NNLOopt is on par with the EGM results of
Ref. [43], which take into account the effects of 3NFs and
4NFs. The predictions of N3LOEM deviate from other re-
sults at higher densities.
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FIG. 4. (Color online). Energy per nucleon for neutron mat-
ter for NNLOopt and N3LOEM [4]. The calculations used
the CC method with the inclusion of particle-particle ladders
and a continuous single-particle spectrum. The shaded area
(EGM) shows uncertainty bands for N3LO chiral effective field
theory calculations of Ref. [43], including 3NFs.

Conclusions – We constructed the new NN chiral EFT
interaction NNLOopt at next-to-next-to-leading order us-
ing the optimization tool POUNDerS in the phase-shift
analysis. The optimization of the low-energy constants
in the NN -sector at NNLO yields a χ2/datum of about
one for laboratory scattering energies below 125 MeV.
The NNLOopt NN interaction yields very good agree-
ment with binding energies and radii for A = 3, 4 nu-
clei. Key aspects of nuclear structure, such as excita-
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tion spectra, the position of the neutron drip line in oxy-
gen, shell-closures in calcium, and the neutron matter
equation of state at sub-saturation densities, are repro-
duced by NNLOopt interaction alone, without resorting
to 3NFs. We performed the initial calculation of the
first 2+ states in 22,24O and 48Ca with NNLOopt supple-
mented by a 3NF and found effects of 3NFs to be small
and good agreement with experimental excitation ener-
gies. The precise role of 3NFs in medium-mass nuclei, the
quantification of theoretical uncertainties, and optimiza-
tions at higher-order chiral interactions will be addressed
in forthcoming investigations.
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