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Decomposing unitaries into a sequence of elementary operations is at the core of quantum com-
puting. Information theoretic arguments show that approximating a random unitary with precision
ε requires Ω(log(1/ε)) gates. Prior to our work, the state of the art in approximating a single qubit
unitary included the Solovay-Kitaev algorithm that requires O(log3+δ(1/ε)) gates and does not use
ancillae and the phase kickback approach that requires O(log2(1/ε) log log(1/ε)) gates, but uses
O(log2(1/ε)) ancillae. Both algorithms feature upper bounds that are far from the information the-
oretic lower bound. In this letter, we report an algorithm that saturates the lower bound, and as such
it guarantees asymptotic optimality. In particular, we present an algorithm for building a circuit
that approximates single qubit unitaries with precision ε using O(log(1/ε)) Clifford and T gates and
employing up to two ancillary qubits. We connect the unitary approximation problem to the prob-
lem of constructing solutions corresponding to Lagrange’s four-square theorem, and thereby develop
an algorithm for computing an approximating circuit using an average of O(log2(1/ε) log log(1/ε))
operations with integers.

PACS numbers: 03.67.Ac, 03.67.Lx

Introduction. The circuit-based model of quantum
computation requires the ability to accurately imple-
ment quantum operations, specified by unitary matri-
ces. These unitary operations are implemented in prac-
tice via classical control protocols, that must be designed
to yield the desired quantum mechanical evolution of the
system and optimized to achieve efficient control. Since
quantum errors and decoherence appear to be unavoid-
able [1], fault tolerance must be employed to give any
hope of scaling quantum computational devices to a point
where they can outperform classical devices. Fortunately,
quantum fault tolerance protocols allow only moderate
overhead on the amount of physical resources required
to accomplish the desired scaling [1, 2]. However, there
is a downside—the transformations that may be imple-
mented in such fault-tolerant protocols are limited to cir-
cuits over very specific gate libraries. In particular, quan-
tum circuits based on the Clifford and T gates naturally
arose in this context.

The Clifford gates often allow efficient implementation
on the physical level [2, 3], and the T gate is required
to accomplish quantum computations beyond those sim-
ulable classically [3], and thus to use quantum mechanics
to its full computational advantage. Fault tolerant im-
plementations of the T gate have been well-studied in
the relevant literature [2, 3]. As an important point, in-
dependently of the details of the quantum information
processing proposal used or the control protocol, Clifford
and T circuits arose as one of the most widely accepted
solution dictated by the requirements of fault tolerance.

The efficient approximation of a unitary evolution us-
ing a discrete universal gate set is crucial for building a
scalable quantum computing device. Understanding the
minimum possible size of approximating circuits is both

a fundamental question in quantum information theory,
and also a critical question for harnessing the power of
quantum information for computing in practice. The ef-
ficiency of constructive solutions will play a significant
role in determining the point at which available quan-
tum computing resources will outperform existing clas-
sical computers. We show that the fundamental lower
bounds on gate complexity for approximating an arbi-
trary unitary operation on a quantum fault tolerant pro-
cessor may be achieved with efficient, constructive algo-
rithms.

Barenco et al. [4] showed that any unitary may be
implemented by a circuit with CNOT and single qubit
gates, effectively reducing the problem to that of the
single qubit unitary synthesis/approximation. In this
letter, we report a constructive algorithm to saturate
the information-theoretic lower bound on the number of
gates required to approximate an arbitrary single qubit
unitary to precision ε, using an additional resource in
the form of two ancillae initialized to a simple state
|0〉. The significance of the improvement provided by
our approach is best seen when, for a fixed precision
ε, all of the approximating circuit parameters such as
depth, the number of gates, and total number of qubits
used are combined into one aggregate figure, such as,
e.g., the product of the three of these parameters. To
further illustrate, O(Depth×GateCount×QubitsUsed) is
O(log7.94(1/ε)) for the standard version of the Solovay-
Kitaev algorithm [5], and O(k log2(1/ε) log(log(1/ε)) +
log4(1/ε) log3(log(1/ε))) for implementing k single-qubit
gates by phase kickback algorithm [6], whereas it is only
O(log2(1/ε)) for our alrogithm reported in this paper.
We next discuss the existing approaches to the solution
of the single qubit synthesis problem as well as how our
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approach improves the state of the art.

Background. Technically, the problem of the single
qubit circuit synthesis is formulated as follows: given a
discrete universal gate set or “library”, find a sequence of
gates in it that approximates a given unitary to precision
ε. Parameter ε determines complexity of the resulting
approximation.

Computing an approximation using the standard
version of the Solovay-Kitaev algorithm [5] takes
O(log2.71(1/ε)) steps on a classical computer and the
number of gates in the resulting quantum circuit is
O(log3.97(1/ε)). The best known upper bound on the
circuit size resulting from the application of the Solovay-
Kitaev algorithm is O(log3+δ(1/ε)), where δ can be cho-
sen arbitrary small [6]. Our gate count is O(log(1/ε)),
however, our circuits employ two ancillae.

From the other side, Harrow et al. [7] show an
Ω(log(1/ε)) lower bound on the number of gates in the
approximating circuit. A certain library of quantum
gates that allows approximating a single qubit unitary to
precision ε with a circuit containing at most O(log(1/ε))
gates is also reported in [7]. However, authors did not
provide an efficient algorithm to construct a circuit meet-
ing the lower bound in the number of gates. Also, the

gate set used, I+2i{X,Y,Z}√
5

, is not considered to be well-

suited for a fault-tolerant implementation, in contrast to
the Clifford and T library. To the best of our knowledge,
constructive saturation of the logarithmic lower bound in
the Clifford and T library has not been shown yet, how-
ever, numerical evidence supports the theory that this is
the case [8] (based on an exponential-time breadth first
search algorithm).

Allowing additional resources helps to achieve in-
teresting improvements over the Solovay-Kitaev algo-
rithm. For example, using a special resource state |γ〉
on O(log(1/ε)) qubits allows to achieve the desired ac-
curacy of approximation by a depth O(log(log(1/ε)))
circuit containing O(log(1/ε) gates [6], also known
as phase kickback algorithm. However, the resource
state preparation requires O(log2(1/ε)) ancillary qubits
and a circuit of depth O(log2(log(1/ε))) containing
O(log2(1/ε) log log(1/ε)) gates. Furthermore, exact
preparation of the resource state |γ〉 is not possible using
gates from the Clifford and T library and qubits initial-
ized to the state |0〉 [9, 10]. In comparison, in our work,
we employ only two ancillae prepared in the simple state
|0〉, which results in achieving the approximating accu-
racy of ε using a circuit with O(log(1/ε)) gates. Also,
our circuit is asymptotically optimal.

One other recent approach uses resource states [11] and
probabilistic circuits with classical feedback. The circuit
itself, excluding state preparation, requires on average a
constant number of operations and a constant number of
ancilla qubits. The method requires precomputed ancil-
lae in the states RZ(2

nφ)H |0〉 to implement RZ(2
mφ).

The other recently developed method to approximate
RZ(φ) that also relies on special resource states, mea-
surements and classical feedback presented in [12]. Our
algorithm does not rely on the measurements and classi-
cal feedback, and our circuit is deterministic. More im-
portantly, our algorithm does not employ sophisticated
ancilla states that, in turn, may require approximation,
as they may not be possible to prepare exactly in the
Clifford and T library [9, 10].
In our previous work [9], we showed that any single

qubit unitary with entries uij in the ring Z
[

i, 1/
√
2
]

can
be synthesized exactly using single qubit Clifford and
T gates. We presented an asymptotically optimal algo-
rithm for finding a circuit with the minimal number of
Hadamard and T gates and asymptotically minimal total
number of gates. More precisely, if the square of the norm
of an element of the single qubit unitary matrix, |uij |2,
can be represented as (a +

√
2b)/2n, where a and b are

integers such that GCD(a, b) is odd, the total number of
gates required to synthesize the unitary is in Θ(n). This
work opened the door for bypassing the Solovay-Kitaev
algorithm for fast circuit approximation of single qubit
unitaries by efficiently approximating arbitrary unitaries
with unitaries over the ring Z

[

i, 1/
√
2
]

. However, as of
the time of this (original) writing, no efficient ring round-
off procedure was reported, and it remains an important
open problem.
Giles and Selinger [10] recently found an elegant way to

prove the conjecture formulated in [9] stating that mul-
tiple qubit unitaries over the ring Z

[

i, 1/
√
2
]

may be
synthesized exactly using Clifford and T library. In this
letter, we employ some of their results to show that, by
adding at most two ancilla qubits, we can achieve asymp-
totically optimal approximation of the single qubit uni-
taries in the Clifford and T library.
Main result. We focus on the approximation of the
following operator:

Λ(eiφ) : α |0〉+ β |1〉 7→ α |0〉+ βeiφ |1〉 .
We note that any single qubit unitary can be decomposed
in terms of a constant number of Hadamard gates and
Λ(eiφ) (see solution to Problem 8.1 in [6]). Therefore,
the ability to approximate Λ(eiφ) implies the ability to
approximate any single qubit unitary.
There are two main steps in our algorithm:

1. Find a circuit C consisting of Clifford and T gates
such that the result of applying C to |00〉 is close
to eiφ |00〉.

2. Apply circuit C controlled on the first qubit to per-
form a transformation close to:

α |000〉+ β |100〉 7→ α |000〉+ βeiφ |100〉 .

It can be observed that the net effect of such transfor-
mation may be described as the application of Λ(eiφ) to
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the first qubit. To accomplish the first step we approx-
imate eiφ |00〉 with a four dimensional vector |v〉 with
entries in the ring Z

[

i, 1/
√
2
]

. We then employ an algo-
rithm for multiple qubit exact synthesis to find a circuit
C that prepares |v〉 starting from |00〉 using at most one
ancilla qubit. It was shown in [13] that any circuit us-
ing Clifford and T gates can be transformed into its ex-
act (meaning no further approximation is required) con-
trolled version with only a linear overhead in the number
of gates, and using at most one ancilla qubit in the state
|0〉 that is returned unchanged. Our analysis shows that,
however, on this step we do not need to use this addi-
tional ancilla. The resulting total number of ancillae is
thus at most two.
Approximating eiφ |00〉. The key is the reduction of the
approximation problem to expressing an integer number
as a sum of four squares. In particular, we are looking
for an approximation of:

eiφ |00〉 = (cos (φ) + i sin (φ), 0, 0, 0)

by a unit vector:

|v〉 := 1

2k
(⌊

2k cos (φ)
⌋

+ i
⌊

2k sin (φ)
⌋

, 0, a+ ib, c+ id
)

,

where k ∈ N; a, b, c, d ∈ Z. Without loss of generality
we can assume that 0 ≤ φ ≤ π

4 . The power k of the
denominator determines precision of our approximation
and complexity of the resulting circuit. As |v〉 must be
a unit vector, the remaining four parameters (a, b, c, and
d) should satisfy the integer equation:

a2 + b2 + c2 + d2 = 4k −
⌊

2k cos (φ)
⌋2 −

⌊

2k sin (φ)
⌋2

.

Lagrange’s four square theorem states that this equa-
tion always has a solution. Furthermore, there exists an
efficient probabilistic algorithm for finding a solution to
the Diophantine equation. For the right hand side M
it requires on average O(log2(M) log logM) operations
with integers smaller than M . It is described in Theo-
rem 2.2 in [14]. We get such a simple round off procedure
and reduction to such a simple Diophantine equation at
the expense of using two qubits instead of one.
Furthermore, in estimating the classical complexity of

the algorithm for finding the approximating circuit, we
will rely on an observation that

4k−
⌊

2k cos (φ)
⌋2−

⌊

2k sin (φ)
⌋2 ≤ 4×2k+Const ∈ O(2k).

The exact synthesis method for finding a circuit that
prepares |v〉 given |0〉 is based on the connection between
the form of the elements of vector |v〉 and the complexity
of the corresponding circuit. More precisely, square of
the absolute value of each element of |v〉 can be written

as (a+
√
2b)/

√
2
n
, where n is minimized across all equiv-

alent representations. The maximum of such n over all
elements of |v〉 defines the complexity of the state prepa-
ration. In particular, it was shown in [10] that it is always

possible to reduce maximal n or the number of elements
of |v〉 with maximal n using finitely many two-level uni-
taries. Furthermore, each of those two-level unitaries can
be implemented exactly using finitely many Clifford and
T gates. In summary, one can always find a sequence of
Clifford and T gates reducing maximal n to 0. This se-
quence defines the circuit synthesizing the desired state
|v〉 given |0〉.
Precision and complexity analysis. Let us intro-
duce γ =

(⌊

2k cos (φ)
⌋

+ i
⌊

2k sin (φ)
⌋)

/2k and express
|v〉 as |v〉 = γ |00〉 + |1〉 ⊗ |g〉. The application of the
circuit C controlled on the first qubit will transform
(α |0〉+ β |1〉)⊗|00〉 into α |000〉+βγ |100〉+β |01〉⊗ |g〉.
The distance of the result to the desired state α |000〉+
βeiφ |100〉 is:

√

|β (eiφ − γ)|2 + |β|2 ‖|g〉‖2.

By the choice of γ we have
∣

∣γ − eiφ
∣

∣ ≤
√
2

2k , therefore the

first term in the sum above is in O(1/22k). The norm

squared of |g〉 equals 1 − |γ|2. The complex number γ
approximates eiφ, and the distance of its absolute value
to identity can be estimated using the triangle inequal-
ity,

∣

∣|γ| −
∣

∣eiφ
∣

∣

∣

∣ ≤
∣

∣γ − eiφ
∣

∣. Therefore, 1 − |γ|2 is in
O(1/2k). In summary, the distance to the approxima-
tion is in O(1/20.5k).

The same estimate is true if we consider the circuit C
as a part of a larger system. In this case we should start
with the state (α |φ0〉 ⊗ |0〉+ β |φ1〉 ⊗ |1〉) ⊗ |00〉. Sim-
ilar analysis shows that the distance to approximation
remains O(1/20.5k).

As shown in [10], it is possible to find a circuit that pre-
pares |v〉 using O(k) Clifford and T gates ([10], Lemma 20
(Column lemma)). The classical complexity of construct-
ing a quantum circuit implementing |v〉 is in O(k). In the
controlled version of this circuit the number of gates re-
mains O(k) ([13], Theorem 1). In summary, we need
O(log(1/ε)) gates to achieve precision ε. The complexity
of the classical algorithm for constructing the entire ap-
proximating circuit is thus dominated by the complexity
of finding a solution to the Diophantine equation, which
is in O(log2(1/ε) log log(1/ε)), counting operations over
integers of size O(log(1/ε).

How many ancillae are needed? A straightforward
calculation shows that the number of ancillae used is
three. However, we can get around using only two ancil-
lae. To understand how, we need to go into the details
of the proof of Lemma 20 (Column lemma) from [10].
It shows how to find a sequence of two-level unitaries of
type iX , T−m(iH)Tm, and W [10] and length O(k) that
allows to prepare a state with the denominator 2k. A
controlled version of the two level unitary is again a two
level unitary. In [10], Lemma 24, it was also shown that
any such unitary required can be implemented using no
extra ancillae. Therefore, the controlled version of the
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circuit C will not use any additional ancilla and we need
only two of them in total.
Lower bound on the number of gates when ancil-

lae are allowed. We use a volume argument to show
the lower bound. Suppose we can approximate any ele-
ment of the group of N by N unitary matrices U(N) with
precision ε by a circuit over gate library G that uses at
most k gates. This implies that we can cover U(N) with
|G|k sets, where each set contains such unitaries from
U(N) that can be approximated by some particular cir-
cuit of length k. By showing that the Haar measure of
each of the mentioned sets is in O(εN

2

), and using the
notion that the measure of the set union is smaller then
the sum of the measures of the individual sets, we obtain
the required bound on k.
The idea is similar to the derivation of the lower bound

for the case when no ancillae allowed, originally found
in [7]. The difference is that we have to deal with the
circuits acting on n+m qubits and consider a more com-
plicated notion of approximation, in contrast to the usual
distance between two unitaries. The precise statement of
the lower bound is achieved by the following lemma:

Lemma 1 Let G be a universal library, and let MV be

a set of unitaries, that simulate a unitary V acting on n
qubits, using m ancillary qubits:

MV :=
{

U ∈ U
(

2m+n
)

|U (|0〉 ⊗ |φ〉) = |0〉 ⊗ (V |φ〉)
}

.

Then, for any ε there always exists a unitary V (ε) such
that the number of gates from G needed to construct a

unitary within the distance ε to MV (ε) is in Ω(log(1/ε)).

The proof of this lemma may be found in the Supple-
mental Material.
Conclusions and future work. Our work answers a
fundamental and important question for both theoretical
and practical quantum information science: up to con-
stant factors, the fundamental limits for approximating
single qubit unitaries to a given precision may be attained
by efficient algorithms.
Our work also opens up several other interesting and

important questions (in no specific order): what are
the constants hidden behind the big-O notation in our
approach, and can they be optimized (while further
optimizations are only possible up to a multiplicative
factor they are, nevertheless, important for practical
purposes)? What are the possible trade-offs between
adding/reducing ancillae and the gate count? Is it pos-
sible to use other efficiently solvable Diophantine equa-
tions to discover approximations of other types of gates?
Lastly, does there exist an efficient algorithm to round
off single-qubit unitaries to those single-qubit unitaries
over the ring Z

[

i, 1/
√
2
]

and avoid the need for ancillary
qubits altogether?
Further development of the ideas reported in this letter

has already led to some interesting results. An efficient

algorithm for approximating a unitary by Clifford and
T circuits without using ancillae and leading to shorter
sequences may be found in [15]. [16] allows to find even
shorter approximating circuits at the expense of a more
intensive (classical) computation. Finally, [17] shows how
to use similar ideas to efficiently approximate unitaries

over the gate set I+2i{X,Y,Z}√
5
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Supplemental Material
Proof of Lemma 1:
Let N = 2n, ρ be the distance induced by Frobenius

norm and µ be the Haar measure on U(N). For a unitary
U from U(2m+n) we define a set of unitaries from U(N)
that can be approximated by U with precision ε as:

b (U, ε) := {V ∈ U(N)|ρ (MV , U) ≤ ε} .

Let Gk be the set of all unitaries that can be constructed
using k gates from the library G. Suppose that for any
unitary V we can find a unitary U from Gk within the
distance ε from MV . In other words, we can cover U(N)
with sets b (U, ε) when U goes through all unitaries that

can be implemented using circuits of length k. This im-
plies:

µ (U(N)) ≤
∑

U∈Gk

µ (b (U, ε)) ≤ |G|k max
U∈Gk

µ (b (U, ε)) .

We will show that µ (b (U, ε)) is upper bounded by C0ε
N2

,
for some constant C0, and, therefore:

k ≥ 1

log |G| log
(

µ (U (N))

C0εN
2

)

. (1)

We next show that we can always find a unitary VU

from U(N) such that the set b (U, ε) is contained in the
ball b(VU , 2ε). This will give us the required bound on
µ (b (U, ε)). Indeed, Haar measure of the ball b(VU , 2ε)
does not depend on VU and equals to b(I, 2ε). As U(N)
is a smooth manifold of dimension N2, the quantity
µ(b(I, 2ε)) is upper bounded by C0ε

N2

for some positive
constant C0. We proceed to the construction of VU .
It suffices to consider only the cases when the set

b (U, ε) is non-empty. Let VU be any element of b (U, ε).
We first show that b (U, ε) is contained in the ball b(U0, ε),
where U0 is an N×N complex matrix, but not necessary
unitary. We second show that ρ(VU , U0) ≤ ε. Let U0 be
a submatrix of U defined as follows:

U0 := {〈ei| ⊗ 〈0|)U (|0〉 ⊗ |ej〉} ,

where {|ei〉} is the standard (computational) basis in
C(N). Taking into account that the distance ρ is induced
by Frobenius norm, we write ρ (U,MV ) ≥ ρ (U0, V ). This
implies:

b(U, ε) ⊆ b(U0, ε) = {V ∈ U(N)|ρ (U0, V ) ≤ ε} .

As VU is an element of b (U, ε) we also have ρ (U0, VU ) ≤
ε.
Estimate (1) on k shows that we need circuits of the

size at least Ω(log(1/ε)) to cover the full group U (N).
If k is chosen in such a way that the inequality (1) does
not hold, due to the volume argument, there exists a
unitary V (ε) such that it is not possible to approximate
any unitary from MV (ε) with precision ε using at most k
gates.


