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Evidence for a quantum-to-classical transition in a pair of coupled quantum rotors

Bryce Gadway,∗ Jeremy Reeves, Ludwig Krinner, and Dominik Schneble
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA

The understanding of how classical dynamics can emerge in closed quantum systems is a problem
of fundamental importance. Remarkably, while classical behavior usually arises from coupling to
thermal fluctuations or random spectral noise, it may also be an innate property of certain isolated,
periodically driven quantum systems. Here, we experimentally realize the simplest such system,
consisting of two coupled quantum kicked rotors, by subjecting a coherent atomic matter wave to
two periodically pulsed, incommensurate optical lattices. Momentum transport in this system is
found to be radically different from that in a single kicked rotor, with a breakdown of dynamical
localization and the emergence of classical diffusion. Our observation, which confirms a long-standing
prediction for many-dimensional quantum-chaotic systems, sheds new light on the quantum-classical
correspondence.

PACS numbers: 67.85.Hj ; 05.45.Mt ; 61.43.-j

In ultracold atomic systems, the quantum nature of
matter can be made manifest in striking ways. One ex-
ample arises in the dynamics of quantum chaotic sys-
tems [1], i.e. in systems whose classical counterparts
are chaotic and in which destructive interference can
suppress the onset of chaos. A paradigm model, the
δ-kicked rotor (δ-KR), can been realized with atomic
matter waves subject to a periodically pulsed optical
lattice [2]. Whereas regimes of fully chaotic behavior
with diffusive growth of the momentum variable are ex-
pected in the classical case, destructive interference leads
to dynamical localization [3–5] for which the momen-
tum distribution remains frozen. The phenomenon of
dynamical localization in the δ-KR is a direct analog of
real-space Anderson localization in one-dimensional (1D)
disordered materials [6], and recent experimental work
[7–10] based on a generalization to quasi-periodic kick-
ing [11] has also provided access to the three-dimensional
case.

Several experimental studies of the δ-KR model [12–
17] have focused on the degradation of dynamical local-
ization in the presence of noise [11, 18–20] and nonlineari-
ties [21–23]. Remarkably, signatures of classical behavior
have been predicted [21] to emerge already in a simple
driven quantum system consisting of just two coupled
kicked rotors, providing hope that the disparate behav-
ior of quantum and classically chaotic systems may be
reconciled in the macroscopic limit.

In this paper we realize such a simple coupled quan-
tum system by subjecting a macroscopic matter wave
to two periodically pulsed, incommensurate optical lat-
tices [24]. As detailed further below, the coupling be-
tween the two rotors, each separately driven by one of
the lattices, arises from the kinetic evolution between the
pulses. We find that the coupling destroys hallmark be-
havior of the off-resonantly driven δ-KR system, causing
a transition from dynamical localization to classically dif-
fusive momentum-space transport. Additionally, we ob-
serve that the coupling greatly modifies the response of

atoms to resonant driving, leading to a suppression of
ballistic transport in momentum space.

Our system consists of an optically-trapped Bose-
Einstein condensate of (1.4±0.4)×105 87Rb atoms in the
|F,mF 〉 = |2,−2〉 hyperfine ground state, which is sub-
ject to two simultaneously pulsed, incommensurate opti-
cal lattices [24] along z, as depicted in Fig. 1 (a). The
lattices have wavelengths λ1 = 1064 nm and λ2 = 782 nm
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FIG. 1. Atomic matter waves in a periodically pulsed optical
lattice potential. (a) A Bose–Einstein condensate is exposed
to a train of N pulses (duration τ , separation T ) of two in-
commensurate optical lattices (wavelengths λ1,2 and depths
s{1,2}). (b) Time-of-flight diffraction spectra (averaged over
3-4 images) of atoms released after N = 1 and 40 kicks, for
driving with a single lattice (s{1,2} = {0, 100}). The momen-
tum distribution along z (integrated along y) after N = 40
kicks is shown in the bottom. (c) As in (b), but for driving
with two incommensurate lattices (s{1,2} = {50, 80}). The
dashed black line at the bottom of (c) is a Gaussian profile
corresponding to diffusive spreading.
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(wave numbers k1(2) = 2π/λ1(2)) and lattice depths
s1(2)ER, where ER = ~2k21/2M is the recoil energy of
the first lattice and M the atomic mass. The pulses
have a duration τ = 2 µs (Raman–Nath regime) and
are spaced at a variable period T . After applying N
pulses, we immediately release the atoms and allow them
to freely evolve in time-of-flight for 16 ms before perform-
ing absorptive imaging of momentum distributions, with
examples shown in Figs. 1 (b,c).

Ignoring effects of the trapping potential and atom-
atom interactions, this system can be approximately
described by the 1D Hamiltonian H = −~2∂2z/2M +

S(z)
∑N

j=1 u(t/τ − jT/τ), where S(z) = [s1 cos(2k1z) +
s2 cos(2ηk1z)]ER/2, u is the normalized boxcar func-
tion, and η = k2/k1 ∼ 1.36 is the ratio of wavenum-
bers. Diffraction by the two optical lattices connects the
zero-momentum condensate to modes with momenta in
multiples of 2~k1 and 2η~k1, respectively. The two sets
of modes have no intersection for irrational values of η,
which allows us to describe the system as effectively 2D
in the plane wave basis |m,n〉 = |m〉

⊗
|n〉, with mo-

menta pm,n = 2(m + ηn)~k1 (we assume that the mode
separation exceeds the spectral width of the condensate).

Approximating the lattice pulses as δ-functions, the
effective 2D Hamiltonian for the system is given by

H = HT + ~(φ̂V1
+ φ̂V2

)

N∑
j=1

δ(t− jT ) , (1)

where HT = ~/T
∑

m,nDm,nn̂m,n describes the kinetic
energy of the plane-wave modes with

Dm,n = κ(m2/2 + ηmn+ η2n2/2) , (2)

and the effect of the pulsed optical potential is captured
by

φ̂V1(2)
= (K1(2)/κ)

∑
m,n

(σ̂−,1(2)m,n + σ̂+,1(2)
m,n ) , (3)

where σ̂±,1m,n = â†m±1,nâm,n and σ̂±,2m,n = â†m,n±1âm,n de-

scribe transitions within each set of modes. Here, â†m,n

(âm,n) is the creation (annihilation) operator and n̂m,n is
the number operator of the composite mode |m,n〉. As in
the standard treatment of the δ-KR [2], which is realized
when either lattice is pulsed alone, we define κ = 8ERT/~
and K1(2) = κs1(2)ERτ/2~. Here, the single-rotors are
driven resonantly whenever κ/4π (η2κ/4π) is a rational
number, i.e. whenever the frequency of δ-kicking matches
a Talbot resonance [25, 26], and the stochasticity parame-
ters K1(2) delineate regimes of regular and chaotic motion
in the classical δ-KR model.

A simple picture of the δ-KR and its connec-
tion to the Anderson model emerges from a stro-
boscopic Floquet analysis [6], in which the effect
of each kick is described by the operator Û =

exp [−i(φ̂V1 + φ̂V2)] exp [−i
∑

m,nDm,nn̂m,n], such that
the initial state |ψ0〉 = |m = 0, n = 0〉 is transformed
to |ψN 〉 = ÛN |ψ0〉 after a series of N kicks. The term
Dm,n (taken modulo 2π) contained in the operator Û
describes the kinetic phase evolution between kicks. In
the language of the Anderson model, it represents a 2D
quasienergy landscape, within which the terms K1(2)/κ
control the strength of discrete-time hopping.

We first discuss a single rotor at quantum resonance,
which is obtained e.g. for the first lattice when κ/4π is
a rational number. In this case, the relevant quasienergy
term from Eq. 2 is equal to zero (mod 2π) for all of the
momentum orders, corresponding to a flat quasienergy
landscape in which tunneling occurs. Thus, atoms ini-
tially localized to a single momentum mode will undergo
ballistic momentum-space transport [25, 26] correspond-
ing to a quantum walk [27]. Contrastingly, if the reso-
nance condition is not fulfilled, the quasienergy landscape
is characterized by pseudorandom disorder in which the
atomic wavefunction dynamically localizes [2].

In our case of two kicked rotors, the 2D quasienergy
landscape is anisotropic. The quantities κ/2 and η2κ/2
control the disorder strengths in the two directions, and
in the absence of the coupling, this 2D system should
display localization for any finite disorder strength [28].
However, in our system a coupling between the ro-
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FIG. 2. Matter-wave dynamics for off-resonant kicking.
(a) Kicking by a single lattice, with K2 = 4.6. Shown is
the atoms’ per-particle energy ε as a function of kick number
N . The black points are experimental data with statistical
error bars (empty circles for individual runs) while the blue
solid and red dashed lines are simulated quantum and classical
trajectories. (b) Off-resonant kicking with two incommensu-
rate lattices (K1 = K2 = 2.3). (c) Energy diffusion rates,
D = ∆ε/∆N , as determined from linear fits to data and sim-
ulated points as in (b), as a function of the kicking strength
for the uniform case K1 = K2 ≡ K1,2. Filled black points are
experimental, open blue disks represent numerical, and error
bars represent the standard error of the linear fits. (d) Calcu-
lated rms momentum width σp′ (in units ~k1) for the ground

state of the single-kick Floquet operator Û .
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tors arises because the geometry remains physically one-
dimensional and because the free-space dispersion rela-
tion for massive particles is quadractic. In the following,
we shall investigate the effect of the coupling term κηmn
in Eq. 2 on the localization properties of the system.

In our experiment, we first tune the pulse period T
such that the kicking is off-resonant for both lattices
(T = 36 µs; κ/4π ≈ 0.29 ; η2κ/4π ≈ 0.54). In the single-
lattice case, the atomic population remains trapped in
the lowest momentum orders and the per-particle energy
ε (in units of ER) shows no net increase over a large num-
ber of pulses, as shown in Fig. 1 (b) and Fig. 2 (a) for
K{1,2} = {0, 4.6}, in agreement with the expectation for
dynamical localization, which occurs after a “quantum
break time” tB = TK2/4κ2 [2, 13]. For our system pa-
rameters, tB is smaller than T (similar as in [17]), such
that dynamical localization sets in immediately. This
finding is confirmed by an exact numerical simulation in
the plane wave basis of states |m,n〉 with momentum
pm,n = 2(m + ηn)~k1 which displays a fast oscillatory
behavior around a constant mean energy [29]. The lack
of growth is also in stark contrast to computed classi-
cal trajectories, whose energy increases very rapidly, cf.
Fig. 2 (a), ruling out effects of classical localization [30].

In contrast to the behavior seen for off-resonant kick-
ing with a single lattice, we observe a delocalization of
the atomic population into a nearly Gaussian momentum
distribution when the second such lattice is added. This
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FIG. 3. Delocalization of coupled kicked quantum rotors in
two dimensions. (a,b) Measured and simulated change in ε
between N = 1 to 40 kicks as a function of K1 and K2 (8-9
sampled points in each direction), for off-resonant kicking as
in Fig. 2. The circles labeled 1-b and 1-c highlight data de-
rived from the distributions shown in Figs. 1 (b,c). (c) Sim-
ulated dependence of the energy ε on N for off-resonant δ-
kicking (T = 36 µs ; τ = 10 ns) by two equally deep lattices
of K1,2 = 5.8, with (c-i, red dashed line) and without (c-ii,
blue solid line) the cross-coupling term of Dm,n. At right, 2D
momentum distributions after N = 100 kicks, decomposed
with respect to the two lattices (Pm,n = |〈m,n|ψN 〉|2).

is shown in Fig. 1 (c) for K{1,2} = K̃ = {2.3, 3.7}. For
uniform kicking K1 = K2 ≡ K1,2, we observe a threshold
near K1,2 ∼ 2 [cf. Fig. 2 (b,c)], above which dynamical
localization disappears and energy growth sets in. This
finding is reproduced by the ground-state properties of
the single-kick operator Û , for which a time-independent
stroboscopic Floquet state analysis [6, 9] reveals a tran-
sition from localized to delocalized states at K1,2 ∼ 2.2,
cf. Fig. 2 (d).

The full dependence of the observed growth on the
kicking strengths K1 and K2 is shown in Fig. 3 (a). We
find essentially zero growth along the axes when either of
the lattices are off-resonantly kicked alone, and a transi-
tion to diffusive growth when there is significant kicking
by both lattices. The data are in good agreement with
simulated quantum trajectories [29], cf. Fig. 3 (b), in-
cluding the position of maximal growth near K̃. While
the coupling term κηmn responsible for delocalization
cannot be independently accessed in our experimental
geometry, we can verify its role through numerical simu-
lations as in Fig. 3 (c), which can also probe more deeply
into the diffusive, metallic phase. A linear energy growth,
characteristic of diffusive transport, is clearly seen for
strong kicking as a consequence of the coupling term,
as opposed to a complete suppression of growth in its
absence. The simulated growth is found to be very sta-
ble [29], persisting to timescales over 3 orders of mag-
nitude longer than the system’s quantum break time tB
(limited only by the simulated system size). Further-
more, we find that in the limit of strong uniform driving
the energy diffusion rate D = ∆ε/∆N is not only non-
zero, but asymptotically approaches the classical diffu-
sion rate Dc = 2(1 + η2)K2

1,2/κ
2 [29].

We note that there exist fundamental differences be-
tween our observations and recent experimental investi-
gations of the 3D Anderson model with cold atomic va-
pors driven at more than one frequency [7, 8, 10], where a
metal to insulator transition results from the competition
between disorder and tunneling. Driving a single lattice
at multiple temporal frequencies [11, 31] is equivalent
to a scenario of multiple uncoupled rotors. In contrast,
we observe a transition in 2D that critically depends on
the inter-rotor coupling. The term κηmn in Eq. 2 rep-
resents a saddle potential which, when added to the two
quadratic terms, breaks reflection symmetry about either
of the two axes (m→ −m and n→ −n), and on average
breaks the Z4 rotational symmetry of the potential land-
scape. We point out that the observed coupling-induced
diffusive behavior is particular to the pseudo-randomness
of disorder in the δ-KR system, and that it is not seen
in simulations when purely random diagonal disorder is
used instead. This is consistent with the fact that tran-
sitions from insulating to metallic behavior do not oc-
cur in 2D systems with purely random disorder, absent
the breaking of time-reversal symmetry or spin-rotation
invariance [32–34] (as due to strong magnetic fields or
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FIG. 4. Dynamical evolution of resonantly kicked matter
waves (K1 = 1.6) in the presence an additional off-resonant
drive (K2). (a,b,c) Momentum-width σp of the atomic dis-
tribution as a function of kick number N , for a pulse period
T = 124 µs (κ/4π ≈ 1), and K2 = 0, 8, 16. Black points
are data from individual experimental runs, the blue line is
a numerical calculation for an initial plane-wave, while the
dashed red curve takes into account finite-size corrections [29].
(d) Growth rate of the momentum-width ∆σp/∆N , deter-
mined by a linear fit to the N -dependence, as a function of
K2. The simulated growth rates (open blue circles) are scaled
by a factor of 1/2 to account for effects of finite size. (e) De-
pendence of the momentum width σp on kick number N , for
the case of resonant kicking (κ/4π = 1 ; τ = 10 ns) with a
single lattice (K{1,2} = {1.6, 0}, black solid line e-i), and with
an added deep incommensurate lattice (K{1,2} = {1.6, 12.8},
red dashed line e-ii). Characteristic momentum-space profiles
in the 2D m-n space are shown at right for N = 100.

spin-orbit coupling in electronic systems).
Finally, we study our system at a quantum resonance

of one of the rotors. For this purpose, we set κ/4π ≈ 1
(T = 124 µs) for the first lattice, while keeping the sec-
ond lattice off-resonant (η2κ/4π ≈ 1.86). When the sec-
ond lattice is off, we observe a linear increase in the rms
momentum width σp (in units of ~k1), cf. Fig. 4 (a).
This is expected for constructive interference and charac-
teristic of ballistic momentum-space transport. Adding
the second lattice causes a reduction of the observed
growth rate, depending on the strength of this lattice,
cf. Figs. 4 (b,c,d). To elucidate the mechanism behind
this decrease, we show in Fig. 4 (e) simulations for a
larger number of kicks (and for more ideal δ-kicking ex-
actly at resonance). The dynamics of σp and the distri-
butions of population within the 2D m-n space suggest
that the inhibition of ballistic transport is due not to a
crossover to classical diffusion (σp ∝

√
N) as seen in the

off-resonant case, but rather to the onset of dynamical
localization in the strongly driven incommensurate lat-
tice. The obvious underlying cause for the suppression

is again the coupling term κηmn, which destroys coher-
ent phase revival between kicks. Remarkably, a complete
suppression of resonant growth results even though the
population spends nearly half of its time in the n = 0
subspace, where the coupling vanishes. This dynamical
suppression of resonant quantum transport due to the ad-
mixture of off-resonant driving bears some resemblance
to effects seen in other dynamical systems such as the
Kapitza pendulum or ponderomotive potentials acting
on charged particles.

To conclude, we have experimentally observed a
quantum-to-classical transition from localized to delocal-
ized dynamics in a system of coupled quantum kicked ro-
tors. Further studies of our model system, as well as ex-
tensions to larger numbers of coupled rotors using several
mutually incommensurate optical lattices, might help to
provide insight into localization phenomena in nonlinear
and disordered systems.
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