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Abstract

The structural, electronic, and optical properties of pyrochlore-type Pb2Ir2O6O’0.55, which is

a metal without spatial inversion symmetry at room temperature, were investigated. Structural

analysis revealed that the structural distortion relevant to the breakdown of the inversion symmetry

is dominated by the Pb-O’ network but is very small in the Ir-O network. At the same time, gigantic

second-harmonic generation signals were observed, which can only occur if the local environment

of the Ir 5d electrons features broken inversion symmetry. First-principles electronic structure

calculations reveal that the underlying mechanism for this phenomenon is the induction of the

noncentrosymmetricity in the Ir 5d bands by the strong hybridization with O’ 2p orbitals. Our

results stimulate theoretical study of inversion-broken iridates, where exotic quantum states such

as a topological insulator and Dirac semimetal are anticipated.

PACS numbers: 61.66.Fn, 77.22.-d, 78.20.-e, 78.47.jh
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Symmetry is a critical factor that controls the physical properties of a solid. Spatial

inversion symmetry is one of the most important symmetries. The most common and

well-studied systems without inversion symmetry are the ferroelectrics, where macroscopic

polarization appears in an insulating state. Recently, conductive materials without inversion

symmetry, which are known as ”noncentrosymmetric metals” or ”polar metals”, have also at-

tracted interest[1, 2]. In contrast to ferroelectrics, noncentrosymmetric metals do not exhibit

macroscopic polarization due to screening by conducting electrons; instead the state is char-

acterized by a higher-rank tensor (e.g. piezo-electric tensor). The breakdown of inversion

symmetry is considered to influence the transport properties. For example, it is theoreti-

cally predicted that the inverse Faraday effect can be induced by Rashba interaction.[1, 3, 4]

However, there have been few experimental studies, because noncentrosymmetric metals are

rare.

There are several noncentrosymmetric metals in the pyrochlore-type transition-metal ox-

ides A2B2O6O’. For example, Pb2Re2O7 exhibits a structural phase transition at 295 K from

cubic centrosymmetric Fd3̄m to cubic noncentrosymmetric F 4̄3m.[5] Another example is

Cd2Re2O7, which loses inversion symmetry below 200 K. The low temperature symmetry is

tetragonal I 4̄m2, which is one of the subgroups of F 4̄3m, as revealed by second harmonic

generation (SHG) measurements.[6] The pyrochlore structure can be divided into two sub-

structures: A2O’ and B2O6 units, as shown in Figs. 1(b) and 1(c), respectively. It has been

conjectured that the breakdown of inversion symmetry is controlled by the covalency of A-O’

bonds, whereas the electronic properties are mainly dominated by d electrons in the B-O

network.[5] It is essential to unravel the interplay between A2O’ and B2O6 units to explore

the inversion-related transport phenomena.

Pyrochlore-type Pb2Ir2O7−x is a unique conductive material in three respects. Firstly,

the crystal symmetry is noncentrosymmetric F 4̄3m, even at room temperature.[7] Secondly,

conduction electrons originate from Ir 5d bands, where a strong spin-orbit interaction is

present.[8] Thirdly, related compounds A2Ir2O7 (A = Y or rare earth metals) exhibit thermal

metal-insulator transitions caused by a strong electron correlation effect.[9] Despite these

intriguing features, there have been no reported studies using a single-crystalline sample.

In this Letter, we report the structural, electronic, and optical properties of single-

crystalline Pb2Ir2O7−x with special attention given to the inversion symmetry. While the

structural analysis shows that the inversion symmetry breaking is dominated by Pb-O’
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bonds, the observed SHG signals, which mainly originate from the noncentrosymmetricity

of the Ir 5d band, are strong. We demonstrate that this phenomena is caused by the large

hybridization of Ir 5d and O’ 2p orbitals, which is unique characteristics of Pb-containing

pyrochlore-type oxides.

Single crystals of Pb2Ir2O7−x with sizes of 2 mm3 were grown by the self-flux method.

PbO and IrO2 powders were mixed in a molar ratio of 9:1, heated to 1250 ◦C, and then cooled

to 950 ◦C at a cooling rate of 5 ◦C/h. Scanning electron microscopy/energy dispersive X-

ray analysis showed that the content ratio of Pb to Ir was 1.0. The oxygen deficiency was

determined to be x = 0.45 by the thermogravimetric/differential thermal analysis method.

Resistivity, the Hall coefficient, specific heat, and magnetic susceptibility were measured by

using a commercial setup. The synchrotron powder X-ray diffraction data for crushed single

crystals was collected at the beamline BL15XU, SPring-8, with wavelength 0.065287 nm.

Reflectivity spectra were measured for the (1 1 1) surface polished with Al2O3 powders.

Optical conductivity spectra were obtained by the Kramers-Kronig transformation. The

SHG signals were detected using the geometry shown in Fig. 4(a). Band structure calculation

based on density functional theory[10, 11] with the Elk full-potential linearized augmented

plane-wave code[12], which includes the spin-orbit interaction, were performed by using

experimentally obtained structural parameters with the F 4̄3m crystal symmetry. The muffin

tin radii (RMT) of 2.0, 2.0, and 1.6 bohr for Pb, Ir and O were used, respectively. The

maximum modulus for the reciprocal vectors Kmax was chosen such that Rmin
MTKmax = 7.0,

where Rmin
MT is the smallest RMT in the system. We employed the Perdew-Burke-Ernzerhof

exchange-correlation functional [13] and 10× 10× 10 k-mesh.

Figure 1(a) shows the synchrotron powder X-ray diffraction pattern for Pb2Ir2O7−x. The

4 2 0 reflection, which is allowed in noncentrosymmetric F 4̄3m and forbidden in centrosym-

metric Fd3̄m, is clearly observed [inset of Fig. 1(a)]. The 4 2 0 reflection does not vanish,

even at 800 ◦C (data not shown), which indicates the robustness of the noncentrosymmet-

ric phase. Rietveld analysis was performed using the RIETAN-FP software[14] with the

assumption that only the O’ site can be vacant; thus obtained structural parameters are

summarized in Table I. The O and O’ sites are split into two sites, O1/O2 and O’1/O’2,

respectively, which reflects the loss of inversion symmetry in F 4̄3m. Consequently, two

types of chemical bonds appear between a cation and an O2− ion with distinguishable bond

length. The splitting ratios between the longer and shorter bond lengths are 0.5% for the
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FIG. 1: (a) Powder X-ray diffraction pattern of Pb2Ir2O7−x. The points denote the experimental

data and the solid line represents the fitting curve. The ticks indicate the allowed reflections in

F 4̄3m, and the line below the ticks represents the residual error. The inset shows a closeup of

the 3 3 1 and 4 2 0 reflections. (b,c) Crystal structure of Pb2Ir2O7−x, which is formed from the

interpenetration of the (b) Pb2O’ and (c) Ir2O6 units. (d) Crystal structure of GaAs.

Pb-O bond, 4.1% for the Pb-O’ bond, and 0.2% for the Ir-O bond. A fairly large bond

length splitting for Pb-O’ compared with other bonds indicates that the breakdown of the

inversion symmetry is dominated by distortion of the Pb-O’ bonds. This is most likely due

to the strong covalency of the Pb-O’ bond.[15, 16] The breaking of the inversion symmetry is

well interpreted by extracting the Pb2O’ unit, as shown in Fig. 1(b). In the centrosymmetric

Fd3̄m phase, O’Pb4 tetrahedra with equal volume form the diamond structure. When the
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TABLE I: Final refined structural parameters of Pb2Ir2O6.55 with noncentrosymmetric space group

F 4̄3m. The lattice constant is a = 1.027149(2) nm. Site occupancy and isotropic atomic displace-

ment parameter are denoted as g and U , respectively. The reliability indices [17] of this fit are Rwp

= 2.45% and Rp = 1.64%.

g x y z U [nm2]

Pb 1 0.87742(5) 0.87742(5) 0.87742(5) 0.000102(2)

Ir 1 0.37520(4) 0.37520(4) 0.37520(4) 0.00054(2)

O1 1 0.303(1) 0 0 0.00013(1)

O2 1 0.448(1) 0.25 0.25 0.00013(1)

O’1 0.55 0.75 0.75 0.75 0.00032(8)

O’2 0.55 0 0 0 0.00032(8)

inversion symmetry is broken, expanded and shrunk tetrahedra are arrayed alternately. The

pattern is completely the same as the arrangement of Ga and As atoms in GaAs with the

zinc blende structure, which also has noncentrosymmetric F 4̄3m symmetry [Fig. 1(d)].

We move to consider electronic properties originating from conduction electrons in the

Ir2O6 unit. The temperature dependence of resistivity ρ, magnetic susceptibility χ, the Hall

coefficient RH, and specific heat Cp are shown in Fig. 2. The resistivity indicates a metallic

nature over the entire temperature range measured; mobile carriers consist of both holes and

electrons, as evidenced by the zero-crossing feature of RH. The magnetic susceptibility is

represented as a sum of the Pauli-paramagnetic component χ0 = 2.33×10−4 emu/Ir-mol·Oe

and the Curie-Weiss-like component C/(T −θW) with C = 2.83×10−2 emu·K/Ir-mol·Oe and

θW = −53.4 K; the latter term possibly originates from crystal imperfections, as observed

in Pb2Ru2O6.5 and Bi2Ru2O7.[18, 19] The specific heat is fitted in the range between T =

1.8 and 6.4 K by the relation Cp = γT + βT 3, where the former and latter terms denote

the electronic and lattice contributions, respectively. We obtained γ = 19.7 mJ/Ir-mol·K2

and β = 0.27 mJ/Ir-mol·K4. The Wilson ratio RW = π2k2
Bχs/3µ

2
Bγ is calculated to be

0.85 with the assumption of χs = χ0, indicating a weak correlation effect. The measurable

discrepancy of Cp from the relation Cp = γT+βT 3 [Fig. 2(c)] is also observed in Pb2Ru2O6.5

and Bi2Ru2O7,[19] and likely originates from the low-energy optical phonons associated with

heavy Pb and Bi atoms.
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FIG. 2: (a, b) Temperature (T ) dependence of (a) resistivity (ρ), and (b) magnetic susceptibility

(χ) for Pb2Ir2O7−x. The inset shows the Hall coefficient (RH) dependence. (c) Temperature

dependence of specific heat (Cp) divided by T for Pb2Ir2O7−x. The solid line represents the fitting

results for the range between T = 1.8 and 6.4 K with the relation Cp = γT + βT 3.

Reflectivity and optical conductivity spectra are shown in Figs. 3(a) and (b), respectively.

In the optical conductivity spectrum, besides the Drude component with the plasma fre-

quency ωp ∼2 eV, two broad structures at 0.4 and 1.3 eV are clearly evident. By applying

a Drude-Lorentz fitting analysis, four components were extracted [labeled as A, B, C, and

D in Figs. 3(b)]. These modes can be understood by referring to the band scheme obtained

from the first-principles calculation [Fig. 3(c)]. Owing to the strong spin-orbit coupling in

the 5d transition metal system, Ir 5d t2g orbitals would be reconstructed into the complex

orbital states, which are the doubly-degenerate Jeff = 1/2 and fourfold-degenerate Jeff =

3/2 states, if there were no crystal field.[20–24] Under the ligand field comparable to the

spin-orbit interaction, Jeff = 1/2 states and Jeff = 3/2 states are hybridized with O/O’ 2p

orbitals and form the α and β bands near the Fermi level. The γ band mostly consists of O

2p orbitals. Therefore, we can assign the mode observed in the optical conductivity spectra

as follows: the Drude term (A) represents the plasma excitation within the α band; the 1.3

eV mode (C) corresponds to the excitation from the β band to the α band; and the high-

energy mode (D) is the charge transfer excitation from the O 2p (γ) band to the α band.
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FIG. 3: (a) Reflectivity (R) spectra as a function of photon energy (E) for Pb2Ir2O7−x at room

temperature. (b) Optical conductivity (σ) of Pb2Ir2O7−x at room temperature. The closed circle

marked at E = 0 eV indicates the dc conductivity obtained from the resistivity measurement. The

dashed line shows the full Drude-Lorentz fit. Dotted lines labeled as A, B, C and D represent

the extracted Drude-Lorentz components. The arrows indicate the energy of the incident (1.55

eV) and generated (3.10 eV) beams of the SHG measurement. (c) Total density of states (DOS),

and partial density of states of Ir 5d, O 2p, O’ 2p, Pb 6s orbitals, and Pb 6p orbitals, which are

obtained from the first-principles calculation.
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The origin of 0.4 eV (B) mode is still unclear; however, we speculate that the mode is the

intraband transition among the α band and/or the excitation associated with the self-doped

hole carriers in the β band, which are stabilized by the local Hund coupling.

In order to investigate the impact of broken inversion symmetry on the electronic states,

we performed an SHG measurement, summarized in Fig. 4. The photon energy of the

incident 800 nm beam (E = 1.55 eV) and generated 400 nm beam (2E = 3.10 eV) are rep-

resented by arrows in Fig. 3(b). Since the optical responses of both energies are dominated

by electrons within the Ir 5d and O 2p bands, the SHG signals mainly reflect the noncen-

trosymmetricity of the Ir 5d and O 2p bands. The observed polarization dependence of the

SHG signals shown in Fig. 4(c) coincides well with the simulated bulk SHG signal, where

the [1 1 1] axis is tilted by 5◦ from the surface normal[Fig. 4(d)].[25] This ensures that the

observed signals come from the bulk SHG response.[26] The SHG signal of a GaAs single

crystal was also measured under the same experimental conditions and the intensity was

compared with that from Pb2Ir2O7−x; the intensity ratio is I(Pb2Ir2O7−x)/I(GaAs) = 0.7.

This result is surprising, because the breakdown of the inversion symmetry in Pb2Ir2O7−x

is caused merely by atomic displacement in the Pb2O’ unit, while that of GaAs originates

from the alternating array of two distinguishable atoms. Furthermore, the SHG indicates

the noncentrosymmetricity of the Ir 5d and O 2p bands, which has seemingly no direct

connection with the Pb2O’ unit.

Our first-principles electronic structure calculations unravel the underlying mechanism

of this unexpectedly large SHG signal. The partial density of states (PDOS) of β bands

[Fig. 3(c)] points to the relatively strong hybridization of O’ 2p orbitals with Ir 5d orbitals

in spite of a long spatial distance (the pathway being O’-Pb-O-Ir). When we divide the

PDOS by the number of atoms in a formula unit (6 for O and 1 for O’), we notice that

the contribution of the O’ 2p orbital is even larger than that of the O 2p orbital. This

indicates that even though Pb2O’ and Ir2O6 units are separated structurally, they are tightly

coupled with each other electronically. Such a large hybridization between B d and O’ 2p

orbitals in the calculated band structure is rarely reported in other pyrochlores with Y and

rare earth atoms as A site; an exceptional example is Tl2Ru2O7.[27, 28] The characteristic

feature common to Pb2Ir2O7−x and Tl2Ru2O7 is that the 6s orbital is located at close to

the Fermi energy (−9 eV for A=Pb and 2 eV for A=Tl) and is strongly hybridizing with O

2p orbitals. Consequently, Pb2O’ and Ir2O6 units are electronically bridged, leading to the
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FIG. 4: (a) Experimental geometry of the SHG measurement. Incident pulsed light with a wave-

length of 800 nm (1.55 eV) is generated using a Ti:sapphire laser. The pulse duration was 100 fs

at a frequency of 82 MHz, with a power of 30 mW in a spot size of 100 µm. The incident beam

vertically directed on the (1 1 1) surface generates a SHG beam with a wavelength of 400 nm

(3.10 eV), which is extracted by a harmonic separator toward the photomultiplier detector. The

half-wave plate and the crystal polarizer control the polarization of the incident and generated

beams, respectively. (b) Relationship between the crystal axis of Pb2Ir2O7−x and the polarization

angle of incident/generated light αω/α2ω on the (1 1 1) surface. (c) Polarization dependence of

the observed SHG signal for Pb2Ir2O7−x. (d) Simulated bulk SHG signal for an F 4̄3m crystal of

which the [1 1 1] axis is tilted by 5◦ from the surface normal.
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strong hybridization of Ir 5d and O’ 2p orbitals.

Once we recognize that the strong hybridization between Ir 5d and O’ 2p orbitals induces

the noncentrosymmetricity in the Ir 5d bands, the enhanced SHG signal can be explained as

follows. Since the incident and generated photon energies coincide with the C and D bands

in the optical conductivity spectrum, respectively, we can approximately express the SHG

susceptibilty tensor of as

χ
(2)
jkl(2ω;ω, ω) ∝

〈α|µj|γ〉〈γ|µk|β〉〈β|µl|α〉

(Eαγ − 2~ω − Γαγ)(Eαβ − ~ω − Γαβ))
,

where µ denotes the dipole operator, Γαγ and Γαβ denote damping factors, Eαβ and Eαγ

denote the excitation energy from the β to α band, and from the γ to α band, respectively.[29]

The matrix element 〈β|µ|α〉 stands for the d-d transition and hence is originally dipole-

forbidden. However, the hybridization of Ir 5d orbitals and O’ 2p orbitals, the latter of

which are sensitive to the noncentrosymmetricity of the Pb2O’ unit, revives this virtual

excitation. Then, χ
(2)
jkl becomes finite, which well explains the large SHG signals.

Recent theoretical studies on the pyrochlore-type iridates have revealed that the ground

state exhibits a wide variety, ranging from a correlated insulator, a topological insulator, to

a Dirac semi-metal, as a consequence of the interplay between the electron correlation effect,

spin-orbit coupling, and band filling.[30, 31] However, the position of Pb2Ir2O7−x among the

global phase diagram is still unclear, because all the proposed theories suppose the inversion

symmetry. Further theoretical studies on inversion-broken systems are therefore necessary

to further understand the electronic behavior of pyrochlore-type iridates.

In conclusion, the structural, electronic, and optical properties of pyrochlore-type

Pb2Ir2O7−x were investigated. Structural analysis indicates that breakdown of the inver-

sion symmetry of the lattice sector is dominated by the Pb2O’ unit. Nevertheless, gigantic

bulk SHG signals comparable to those of GaAs reveal the strong noncentrosymmetricity of

the electrons in the Ir 5d band. We have shown that the electronic non-centrosymmetricity

originates from the large hybridization of O’ 2p orbital with Ir 5d band, which is mediated

by the closeness of energy level of Pb 6s and O 2p orbitals.
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