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Quantum transition points in the J-Q model – the testbed of the Deconfined Critical Point (DCP)
theory – and the SU(2)-symmetric discrete NCCP1 representation of the deconfined critical action
are directly compared by the flowgram method. We find that the flows of two systems coincide in a
broad region of linear system sizes (10 < L < 50 for the J-Q model), implying that the DCP theory
correctly captures the mesoscopic physics of competition between the antiferromagnetic and valence-
bond orders in quantum spin systems. At larger sizes, however, we observe significant deviations
between the two flows which both demonstrate strong violations of scale invariance. This reliably
rules out the second-order transition scenario in at least one of the two models and suggests the
most likely explanation for the nature of the transition in the J-Q model.
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The concept of the deconfined critical point (DCP) [1–
3] was developed for understanding quantum transitions
in two dimensions (2D) between phases characterized by
different broken symmetries. The key feature of DCP is
the emergence of fractional degrees of freedom (spinons)
and gauge fields at the critical point (cf. [4]). Potentially,
the DCP scenario has a broad range of applications rang-
ing from quantum phases transitions in lattice models
and magnets to normal-superfluid transitions in multi-
component charged superconductors, etc. [1–3, 5, 6].
Ultra-cold atoms in an optical lattice is another promis-
ing system where DCP can be tested experimentally [7].

A hallmark of the theory is a conjecture that the DCP
universality class is captured by the 3D classical DCP ac-
tion involving two complex-valued matter fields, ψa=1,2,
describing spinons coupled to a vector gauge field [1–
3, 6]. Depending on the symmetry group of the underly-
ing quantum system—global U(1) or global SU(2)—the
DCP action features the following symmetry in terms of
its two components: either the Z2 symmetry between two
spinon fields and the U(1)×U(1) symmetry associated
with the individual phases of ψa or an enhanced SU(2)
symmetry between the spinon fields. However, flowgram
studies of the typical U(1)×U(1) [8] and SU(2) [9] DCP
actions revealed generic runaway flows consistent with
weak first-order transitions for any value of the gauge
interaction (cf. Refs. [10, 11], where the first order was
observed, respectively, in a special model, or at a specific
value of the interaction).

The initial work focused on microscopic models of
the superfluid to solid quantum phase transitions first
claimed the observation of the second-order U(1)×U(1)
transition [12] but severe violations of scale invariance
revealed in the subsequent analysis all but ruled it out
[13]. Similarly to the U(1)×U(1) case, early studies of

the anti-ferromagnetic SU(2)-symmetric J-Q model [14–
16] suggested that the Néel phase transforms into the
valence bond solid (VBS) in a continuous fashion, while
subsequent work [17, 18] revealed violations of scale in-
variance. It is important, however, that, up to linear sys-
tem sizes of a few hundred sites, the J-Q model clearly
demonstrates an emergent U(1) symmetry and its run-
away flow remains rather weak, leaving room for specu-
lations about the second-order DCP scenario [18].

In this Letter, we perform a direct quantitative com-
parison of critical flows in the J-Q and the 3D SU(2)-
symmetric discrete NCCP1 models. The rationale behind
our study is as follows. Slow run-away flows in both mod-
els suggest the key point that, independently of the order
of the transition, the DCP theory in general, and the 3D
SU(2)-symmetric discrete NCCP1 model, in particular,
capture the essence of the quantum phase transition at
least at intermediate scales of distances. And we indeed
find that the winding-number flowgrams [8, 9] of the two
models can be collapsed in a significantly large region of
linear system sizes (up to L ≈ 75 for the J-Q model),
proving the hypothesis. At larger sizes we observe sig-
nificant deviations between the two flows which preserve
their runaway character. The most conservative conclu-
sion then is that at least one of the two models does not
feature the second-order criticality, with the straightfor-
ward interpretation being that both models feature weak
first-order transitions.
J-Q and DCP models. The SU(2)-symmetric J-Q model
describing s = 1/2 spins on a square lattice has been
analyzed in Ref. [14]:

H = J
∑
〈ij〉

~̂Si ~̂Sj −Q
∑
〈ijkl〉

( ~̂Si ~̂Sj − 1
4 )( ~̂Sk ~̂Sl − 1

4 ) . (1)

The first sum runs over nearest-neighbor sites 〈ij〉 and
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represents the standard Heisenberg model with J > 0.
The second sum runs over the corners of plaquettes
P = 〈ijkl〉 such that ij and kl form two parallel adjacent
horizontal or vertical links and adds the four-site ring-
exchange terms with Q > 0. The model features a phase
transition between the Néel and an insulating VBS phase
(its precise nature, however, cannot be determined from
available system sizes [17, 19]). While in the Néel phase

the order parameter, the Néel vector, ~S = 〈 ~̂S〉 is linear in
the spin operator, the VBS long-range order is based on

a bilinear scalar combination of ~̂S. Since broken symme-
tries in these phases are different, according to the stan-
dard Ginzburg-Landau-Wilson paradigm a single phase
transition between them must be discontinuous. [The ac-
tual discontinuities, however, should be very weak if one
of the order parameters is characterized by a significant
numerical smallness far away from the transition, as is
the case in the VBS phase of the J-Q model where the
dimer order

√
D2 ≈ 1/20 and no signatures of Z4 broken

symmetry are observed even for largest system sizes [14]].
Thus, if a single continuous transition were observed, this
would be a strong evidence supporting the second-order
DCP scenario.

The DCP is described by the 3D classical two-
component SU(2) symmetric electrodynamics with the

emerging U(1) gauge vector-field ~A [1–3], HDCP =∫
d3x{t|[~∇ − i ~A]ψ|2 + 1

8g (~∇ × ~A)2}, where the spinor ψ

consists of two complex fields ψ = (ψ1, ψ2). According to

the mapping, the Néel vector ~S = 1
2~n , where ~n is given

by

~n = ψ∗~σψ, (2)

with ~σ standing for the Pauli matrices. With the NCCP1

fixed-modulus constraint [1], |ψ1|2 + |ψ2|2 = 1, one ob-
tains ~n2 = (|ψ1|2 + |ψ2|2)2 = 1 and n+ = nx + iny =
2ψ∗1ψ2 implying that the azimuthal angle of ~n is the rel-
ative phase of the spinon fields, ϕ = ϕ2 − ϕ1, where
ψa ∼ exp(iϕa), a = 1, 2.

The lattice version of the DCP action on a simple cubic
lattice [2, 3] is:

HDCP = −t
∑
〈ij〉, a

(
ψ∗aiψaje

iA〈ij〉 + c.c.
)

+

+
1

8g

∑
P

(
~∇× ~A

)2
, (3)

where the gauge field A〈ij〉 is oriented along the bond 〈ij〉
from site j to site i, and ~∇× ~A is the lattice curl-operator
evaluated on elementary plaquettes P. The effective con-
stants (t, g) relate in some way to the parameters of the
J-Q model (1). Below we will present evidence that
g = 1.1 and t = 0.8822(4) provide the closest descrip-
tion of the J-Q model with J/Q ≈ 0.04 up to a linear
size L ∼ L∗ = 75.

Dual variables. In Ref. [9], the statistics of the model (3)
has been reformulated in terms of the dual variables—
integer bond currents ~J (a) which obey the Kirchhoff con-
servation laws. Accordingly, the partition function of the
DCP action HDCP (3) can be represented as

Z =

∫
d ~A0

∑
~W1, ~W2

Z( ~W1, ~W2) ·

exp
[
i
(
~δϕ1 + ~A0

)
· ~W1 + i

(
~δϕ2 + ~A0

)
· ~W2

]
, (4)

where ~A0 stands for the q = 0 harmonic of the gauge field
defined on the lattice with periodic boundary conditions,
~Wa are windings of the bond currents ~J (a), and ~δϕa stand
for the Thouless boundary phase twists of the spinon-
field phases ϕa. By definition, Z( ~W1, ~W2) is the partition
function in a given winding number sector. The integra-
tion over ~A0 yields the constraint ~W1 + ~W2 = 0 so that
Z =

∑
~W Z( ~W,− ~W ) exp(i ~δϕ· ~W ) with ~δϕ ≡ ~δϕ1− ~δϕ2.

The stiffness of the S-vector field is found from

ρS =
1

3L

d2 lnZ

d( ~δϕ)2

∣∣∣∣∣
~δϕ=0

=
1

3L
〈 ~W 2〉, (5)

It is important that at the critical point the scaling be-
havior of winding numbers is characterized by 〈 ~W 2〉 =
O(1) so that ρS ∝ 1/L. In the ordered Néel phase

〈 ~W 2〉 ∝ L and the stiffness is finite, ρS = O(1).
Our simulations of the J-Q model (1) are based on

the path-integral representation for the partition function
with periodic boundary conditions in the imaginary time
0 < τ ≤ β, where β denotes the inverse temperature
(in both cases we employ the Worm Algorithm approach
[20]; simulations of the DCP action were performed as
described in Ref. [9]). Accordingly, the spin stiffness ρJQ
with respect to the Thouless phase-twist can be expressed
in terms of the spin world-line windings W ′x,W

′
y along the

spatial directions x and y , respectively:

ρJQ =
1

2β

[
〈(W ′x)2〉+ 〈(W ′y)2〉

]
. (6)

In order to compare the two models at the transition
point we also need to fine-tune the β/L ratio for each sys-
tem size L in order to reach the space-time symmetry in
the J-Q model. We achieve this by defining a space-time
symmetric winding in the time direction, W ′τ ≡

∑
x,y Sz

(in the basis where Ŝz = Sz = ±1/2 is diagonal), and
requiring that its mean-square fluctuations coincide with
〈(W ′x)2〉 = 〈(W ′y)2〉. We note that W ′τ is defined without
the factor of 2 (cf. Eq.(4) of Ref.[18]). Such definition
guarantees that fluctuations of W ′τ proceed in the same
way as the spatial windings do—in increments of ±1.

Thus, if parameters of both models (1) and (3) are
kept at the critical point J/Q ≈ 0.04 [14] and t = t(g)
(below the bicritical point) [9], the universal values of
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FIG. 1: (Color online) Optimal ratio β(L)/L vs L, with the
numerical data represented by dots obtained at the pseudo
critical points defined in the text. Solid red line is the fit
by D + A exp(−BL) and the dashed-dotted blue line is the
fit by D + B/L, with the dashed black line representing the
asymptote β/L = D = 0.4270 ± 0.0005 corresponding to the
space-time symmetry of the J-Q model.

the winding number fluctuations in both models RJQ =
〈[(W ′x)2 + (W ′y)2 + (W ′τ )2]〉 ∼ O(1) and R = 〈[(Wx)2 +
(Wy)2 +(Wz)

2]〉 ∼ O(1) must coincide provided J-Q and
NCCP1 models have the same fixed point.

Finite size analysis. Simulations of both models have
been conducted for a sequence of linear sizes using ex-
actly the same definition of the pseudo-transition point
in a finite size system, according to the flowgram method
[8, 9]. Specifically, we tuned model parameters so that
the ratio of statistical weights of configurations with and
without windings, F , equals the same constant of order
unity. We have chosen F = 0.55 because it offers the
smallest deviations from the space-time symmetry in the
J-Q model at large L, as shown in Fig. 1. The values of
the parameters at the pseudo-transition points for both
models are presented in Fig. 2.

The universality of scaling behavior is characterized by
a unique function R = R(F) in the thermodynamic limit
L → ∞, β ∼ L, i.e. for fixed F = 0.55 one expects that
R(L) curves saturate to the same value even if they de-
viate from each other at finite L. To see if this is indeed
the case we have measured RJQ vs L and R vs (L, g) for
several values of L (from L = 4 to L = 36 for the DCP
model and from L = 6 to L = 196 for the J-Q model).
Figure 3 shows the family of DCP flowgrams R(L) for
several values of the interaction constant g. It also shows
the flowgram RJQ(L) for the J-Q model. It is immedi-
ately clear that the values of R-curves overlap and all by
itself this is an evidence that DCP theory captures the
physics of the transition point in the J-Q model. This
crucial aspect as well as that all the curves feature diver-
gence with L, in violation of the scale invariance hypoth-
esis for both models will become more evident below.

As discussed earlier in Ref. [9], the family of DCP
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FIG. 2: (Color online) Size-dependent transition points
(J/Q)c(L) of the J-Q model with the β/L ratios as in
Fig. 1. The inset shows the pseudo-transition points tc(L, g)
for g = 1.1 in the DCP model (3). Extrapolation of both
curves to the L → ∞ limit provides estimates of the ther-
modynamic transition points: (J/Q)c = 0.0451± 0.0004 and
tc(g = 1.1) = 0.8822± 0.0004.
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FIG. 3: (Color online) Flowgrams of the J-Q (red line) and
the DCP models (for several values of g).

flowgrams can be collapsed on a single master curve
by rescaling system sizes as L → C(g)L, where C(g)
is found as a variational distance scale for each value
of g. This collapse implies that properties of the DCP
model at coupling strength g = g1 and length scale
L = L1 are essentially the same as at g = g2 and
L = L2 = L1C(g1)/C(g2), provided L is larger than some
microscopic size ≈ 6. Figure 4 shows the quality of the
data collapse procedure as well as the master curve which
emerges from it. It also shows the flowgram of the J-Q
model with rescaled distance L → CJQL. The value of
CJQ has been adjusted in order to achieve the best over-
lap with the DCP-master curve. Note that the freedom of
choosing CJQ is equivalent to shifting the RJQ curve hor-
izontally as a whole (in the logL-scale), i.e. the curve’s
shape remains preserved. It means that the rescaling
procedure is not supposed to result in the same slope at
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FIG. 4: (Color online) Flowgrams from Fig. 3 are collapsed by
rescaling system sizes as L′ = C(g)L for the DCP model (this
amounts to the horizontal shifts of the curves) and L′ = 6.8L
for the J-Q model. Green dotted line shows the master
curve fit by the A + B(L′)α function with A = 0.463, B =
0.00823, α = 0.437. The lower (orange) dot on the R′-axis
indicates the universal value R′O(4) ≈ 0.475 for the O(4) uni-

versality class (g = 0 case). The upper (red) dot on the R′

axis corresponds to the universal value R′O(3) ≈ 0.583 char-

acterizing the O(3)-universality. Inset: the rescaling function
C(g) such that C(0.3) = 1.
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FIG. 5: (Color online) J-Q flowgram from Fig. 4 is shown
together with the DCP g = 1.1 flowgram demonstrating the
best overlap between the two models. The dotted line shows
the master curve. The vertical arrow indicates the scale (L∗ =
75 for the J-Q model ) starting from which the flows diverge
significantly. The dots on the R′ axis mark the O(4) and O(3)
universal values as in Fig. 4, with the dashed horizontal line
for the O(3) asymptote.

the crossing point between the two flows unless they have
some common origin. As can be seen, the two curves co-
incide with each other at length scales 10 < L < 50 (in
terms of “bare” J-Q model sizes) before they start sig-
nificantly diverging from each other at L >∼ L∗ = 75. It
is also important that the J-Q flow starts from the O(4)

universal value R′O(4) ≈ 0.475 rather than from the O(3)

universality characterized by R′O(3) ≈ 0.583 as one would
expect from the classical Heisenberg model, see Fig. 5.
Finally, as Fig. 5 clearly shows, the J-Q flow runs past
the O(3) universality at L > L∗.

Conclusion and discussion. Our key finding is that the
physics of the transition point between the Néel and in-
sulating VBS phases in the J-Q model is indeed captured
by the DCP model up to a large length scale L∗ = 75.
At small sizes the flows of R and RJQ start from the
universal value characterizing the O(4) universality class
R′O(4) ≈ 0.475. This very fact is a strong indication that
spinons emerge as dominant degrees of freedom in the
J-Q model already at length scales L < 8 (in agreement
with the observed U(1) symmetry of the VBS order pa-
rameters [14]). However, the divergence of the flows at
L > L∗ unambiguously excludes the possibility that the
J-Q model and the DCP action share the same criticality
in the thermodynamical limit.

As shown in Ref. [9], the run-away flow of the DCP
master curve ends up in the first order phase transition
(detectable at g ≈ 1.65 for sizes L ∼ 30 − 36). [The
rescaling function C(g) shown in the inset in Fig. 4 is
a smooth function defined on g ≥ 0. It has no features
indicating the presence of the tricritical point at some
g = gtr > 0]. This explains why the J-Q and DCP flows
ultimately depart. Given the data, there are two possi-
bilities for the ultimate fate of the J-Q flow: either the
first order transition or some unknown universality at
larger values of R′. The fact that both models follow the
same flow at L < L∗ and both violate the scale invari-
ance hypothesis at large length scales strongly favors the
first possibility—while showing quasi universal behavior
at intermediate L the two models deviate from this uni-
versality when the system size is approaching the size of
the first-order nucleation bubble which does not need to
be the same in different models.
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