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Strongly correlated quantum systems can exhibit exotic behavior controlled by topology. We
predict that the ν = 1/2 fractional Chern insulator arises naturally in a two-dimensional array of
driven, dipolar-interacting spins. As a specific implementation, we analyze how to prepare and
detect synthetic gauge potentials for the rotational excitations of ultra-cold polar molecules trapped
in a deep optical lattice. With the motion of the molecules pinned, under certain conditions, these
rotational excitations (acting as effective spins) form a fractional Chern insulating state. We present
a detailed experimental blueprint for its realization and demonstrate that the implementation is
consistent with near-term capabilities. Prospects for the realization of such phases in solid-state
dipolar systems are discussed as are their possible applications.

PACS numbers: 73.43.Cd, 05.30.Jp, 37.10.Jk, 71.10.Fd

The quest to realize novel forms of topological quan-
tum matter has recently been galvanized by the no-
tion of fractional Chern insulators - exotic phases, which
arise when strongly interacting particles inhabit a flat
topological bandstructure [1–8]. Particles injected into
these exotic states of matter fractionalize into multiple
independently propagating pieces, each of which carries
a fraction of the original particle’s quantum numbers.
While similar effects underpin the fractional quantum
Hall effect observed in continuum two dimensional elec-
tron gases [10, 11], fractional Chern insulators, by con-
trast, are lattice dominated. They have an extremely
high density of correlated particles whose collective exci-
tations can transform non-trivially under lattice symme-
tries [8, 9, 12].

In this Letter, we predict the existence of a fractional
Chern insulator in dipolar interacting spin systems. This
state exhibits fractionalization of the underlying spins
into quasiparticle pairs with semionic statistics [13, 14].
The predicted FCI state may also be viewed as a gapped
chiral spin liquid (CSL) [13, 15].

Several recent studies have conjectured the existence of
fractionalized topological phases in idealized lattice mod-
els that require sensitively tuned long-range hopping and
interactions [5–7, 16–18]. Broadly speaking, two single-
particle microscopic ingredients are required. First, the
dispersion of the lattice band-structure must be quenched
relative to the energy scale of interactions [16–18]. Sec-
ond, the flat band should possess a non-trivial Chern
number, reflecting the underlying Berry phase accumu-
lated by a particle moving in the band-structure. To
observe a fractionalized insulating state, one must par-
tially fill the topological flat band-structure with inter-
acting particles; since the FCI state generally competes
with superfluid and crystalline orders, the resulting phase

diagram naturally exhibits both conventional and topo-
logical phases (Fig. 1). Up to now, it has been unclear
whether such exotic fractional Chern insulating phases
can be realized in any real-world physical system.

We consider a two-dimensional array of tilted, driven,
generalized spins interacting exclusively through their in-
trinsic dipolar interaction, as depicted in Fig. 1a. This
interaction mediates the long-range hopping of spin-
flip excitations. The quenching of the spin-flip band-
structure owes to the anisotropy of the dipole-dipole
interaction, which yields interference between different
hopping directions [19]. The production of a synthetic
background gauge potential is accomplished via spatially
varying electromagnetic radiation [19, 20]. Together, the
dipolar anisotropy and this radiation induce orientation-
dependent Aharonov-Bohm phases that ultimately gen-
erate topologically nontrivial flat bands [19].

To be specific, we focus on an implementation us-
ing ultra-cold polar molecules trapped in a deep two-
dimensional optical lattice. Such an implementation has
many advantages, including local spatial addressing, sta-
ble long-lived spins, and strong intrinsic dipolar interac-
tions [23–25, 27]. The molecules are subject to a static

electric field ~E tilted with respect to the lattice plane
(inset Fig. 1a). We assume that the molecular motion is
pinned, and hence, restrict our attention to an effective
rotational degree of freedom on each site, with associated
Hamiltonian, Hm = BJ2 − dzE, where E is an applied
electric field [26]. In particular, we focus on the four
lowest rotational levels: |0, 0〉, the rovibrational ground
state and the three states within the J = 1 manifold
(|1,−1〉, |1, 0〉, |1, 1〉), where J characterizes the rota-
tional angular momentum of the molecules. Here, the
quantization axis, ẑ, lies along the applied electric field
and |J,m〉 denotes the state adiabatically connected (via
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FIG. 1. Realization of a fractional Chern insulator. (a)
Schematic representation of the two-dimensional array of po-
lar molecules dressed by optical beams (red arrows). Each
polar molecules is characterized as an effective pseudo-spin-
flip, which can hop and interact mediated by the long-range
dipolar interaction; φ represents the Aharanov-Bohm phase
which the spin-flip acquires as it traverses a plaquette. (in-
set) Molecules occupy the {X,Y } plane and the rotational
quantization axis is set by an applied electric field along the ẑ
direction. Θ0 and Φ0 define the {x, y, z} axes with respect to
the lattice coordinates {X,Y, Z}. (b) We consider the J = 0, 1
manifolds of each molecule with the |0, 0〉 state representing
spin-down. The spin-up state is created via optical Raman
dressing in the M -configuration. The optical radiation ad-
mits a single dark eigenstate, which is a linear combination
of the three states in the J = 1 manifold. (c) Phase diagram
for 40K87Rb molecules at half-filling with a total of Ns = 24
sites as a function of electric field strength and tilt Θ0. Each
phase finds a direct analogy in the language of frustrated mag-
netism and the equivalent nomenclature is given below. The
knight’s move solid (KMS), checkerboard (CKB) and striped
supersolid (SSS) are named for the position of bosons in the
structure factor. The dotted line at |E| = 0 signifies the fact
that a minimal electric field is always required to split the
degeneracy within the J = 1 manifold.

~E) to the rotational eigenstates [28, 44]. Each molecule
is driven by optical radiation, which couples the three
J = 1 states to a pair of molecular excited states |e1〉
and |e2〉, in the so-called M -scheme (Fig. 1b). The
Hamiltonian for each molecule with the laser on has the
form Hr = ~[ |e1〉(Ω1〈1,−1| + Ω2〈1, 0|) + |e2〉(Ω3〈1, 0| +
Ω4〈1, 1|) + h.c. ] in the rotating frame, where Ωi are
Rabi frequencies serving as the control parameters. The
above Hamiltonian admits a unique “dark” eigenstate,
|↑〉 = 1

Ω̃
(Ω2Ω4|1,−1〉 − Ω1Ω4|1, 0〉 + Ω1Ω3|1, 1〉), which

is decoupled both from the excited states and from the
radiation field (Ω̃ is a normalization). Together with the

rovibrational ground state, which we label as |↓〉, this
forms an effective two-state spin degree of freedom on
each site [19, 28–32].

Individual molecules interact with one another via elec-
tric dipole-dipole interactions,

Hdd =
1

2

∑
i 6=j

κ

R3
ij

[
di · dj − 3(di · R̂ij)(dj · R̂ij)

]
, (1)

where κ = 1/(4πε0) and Rij connects molecules i and
j. The dipole moment operator (di and dj) of each
polar molecule couples its internal rotational levels and
is directed along the internuclear axis. We let d be
the permanent molecular dipole moment and R0 be the
nearest-neighbor lattice spacing; we note that d, al-
though related, is not the effective dipole moment of
our pseudospins [44]. By ensuring that the charac-
teristic dipolar interaction strength, κd2/R3

0, is much
weaker than the optical dressing, Ωi, all molecules re-
main within the Hilbert space spanned by {|↑〉 , |↓〉}.
Moreover, this interaction is also much weaker than the
bare rotational splitting 2B (Fig. 1b) and thus can-
not cause transitions that change the total number of
|↑〉 excitations. This effective conservation law suggests
the utility of recasting the system in terms of hard-

core bosonic operators, a†i = |↑〉 〈↓|i, which create spin-
flip “particles”. Mediated by the dipolar interaction,
these molecular spin-flips hop from site j to site i with
amplitude tij = −〈↑i↓j |Hdd |↓i↑j〉. As each hardcore
boson harbors an electric-field induced dipole moment,
there also exist long-range density-density interactions
of strength Vij = 〈↑i↑j |Hdd |↑i↑j〉 + 〈↓i↓j |Hdd |↓i↓j〉 −
〈↑i↓j |Hdd |↑i↓j〉 − 〈↓i↑j |Hdd |↓i↑j〉. In combination, this
yields a two-dimensional model of hardcore lattice bosons
[44],

HB = −
∑
ij

tija
†
iaj +

1

2

∑
i 6=j

Vijninj , (2)

whose total number, N =
∑
i a
†
iai, is conserved [19, 44].

Variations in the dipolar-induced on-site potential, tii,
can be regulated via tensor shifts from the optical lattice
[44].

To ensure that our effective hardcore bosons reside in
a topological flat band, we adjust the optical beams that
dress the molecules to produce a square lattice with four
types of sites, {a, b, A,B}, as shown in Fig. 2a [44]. Ow-
ing to interference between the dressing lasers, the dark
state on each of the sites is a different linear combination
of the three J = 1 states, implying that the hardcore bo-

son, a†i , is site-dependent. Despite the existence of four
unique lattice sites, so long as tij and Vij remain invari-
ant under translations by the direct lattice vectors ~g1

and ~g2 (Fig. 2a), the Hamiltonian retains a two-site unit
cell. Thus, computing the single-particle band-structure
produces two bands in momentum space, with the bot-
tom band possessing nonzero Chern number, C = −1, as
shown in Fig. 2b [19].
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FIG. 2. Topological Flat Bands. (a) Schematic representation
of the 2D dipolar array. a, b, A and B sites are characterized
by dark eigenstates that are different linear combinations of
the three J = 1 states. Square plaquettes are characterized by
a time-reversal breaking flux, φ, which is staggered through-
out the lattice. The lattice harbors a two-site unit cell and
is invariant under translation by direct lattice vectors ~g1 and
~g2. (b) An optimized band-structure in the reduced Brillouin
zone (RBZ) depicting a flatness ratio f ≈ 11.5. The lowest
band carries Chern index C = −1. The electric field tilt is
{Θ0,Φ0} = {0.68, 5.83} and the electromagnetic driving pa-
rameters are detailed in the supplemental information.

Numerical optimization of the electric-field and the op-
tical dressing yields a variety of flat bands. The opti-
mized band-structure depicted in Fig. 2b has a flatness
ratio [16–18], f ≈ 11.5, and is obtained at weak DC
electric fields, just strong enough to split the degeneracy
within the J = 1 manifold (relative to the dipolar inter-
action strength) and to set the quantization axis [24].

With topological flat bands in hand, we now consider
the actual many-body phases which arise at finite lattice
filling fractions ν (number of spin flips per unit cell).
To this end, we perform exact diagonalization of the
full many-body Hamiltonian at ν = 1/2 on systems of
varying sizes up to Ns = 44 sites with periodic bound-
ary conditions. For weak electric fields tilted near the
so-called magic angle, Θ0 = cos−1(1/

√
3) [33], diago-

nalization reveals the existence of a bosonic ν = 1/2
fractional Chern insulator. As numerical diagnostics,
this topological state requires the presence of two-fold
ground-state degeneracy on a torus (Fig. 3a) and a neu-
tral spectral gap that is stable as the system size in-
creases (Fig. 3b). The quantity analogous to the Hall
conductance, σxy = 1

2π

∫ ∫
F (θx, θy)dθxdθy = −0.5, ap-

pears unambiguously in the response of the system to
boundary-condition twists {θx, θy} (equivalent to flux in-
sertion) in the form of a well-quantized many-body Berry
curvature, F (θx, θy) = Im(〈 ∂Ψ

∂θy
| ∂Ψ
∂θx
〉−〈 ∂Ψ

∂θx
| ∂Ψ
∂θy
〉) [2, 5, 7].

The counting statistics of low energy quasihole states
provide a direct diagnostic of the fractionalization of re-
moved particles [2, 35]. Counting the total number of ad-
missible quasihole arrangements on a torus (for a ν = 1/2

FCI) yields, Qtorus =
(
Nuc+1−Nb

Nuc+1−2Nb

)
−
(
Nuc−1−Nb

Nuc+1−2Nb

)
, where

Nuc = Ns/2 is the number of lattice unit cells and Nb is
the number of hardcore bosons. As depicted in Fig. 3c

TABLE I. Diagnostics of Many-body Phases

Phase Degeneracy SF Response Structure Factor σxy

FCI 2 none fluid -0.5

SF 1 isotropic fluid gapless

SSS 3 uni-directional stripes gapless

KMS 4 none knight’s move 0

CKB 2 none checkerboard 0

SS 4 none stripes 0

for our system, numerically counting the total number of
quasihole states matches the above formula precisely.

Remaining at ν = 1/2, we now probe the many-body
phases which arise as one varies the DC field strength
and the tilt, Θ0, while adjusting the optical parameters
to keep the local dark states fixed [44]. Changes in the
tilt alter the geometry of the dipoles and introduce ad-
ditional dispersion into the single-particle bands. On the
other hand, increasing the electric field strength enhances
the long-range interactions. These qualitative differences
in the microscopics yield a rich phase diagram exhibiting
both conventional and topological phases, as shown in
Fig. 1c. In addition to the FCI phase, there exist four
distinct crystalline phases at strong DC fields and a large
superfluid region at moderate fields (see Table I for diag-
nostics and [44] for details). While we use the language
of lattice bosons above, we note that the FCI phase may
also be interpreted in the language of frustrated mag-
netism as a chiral spin liquid while the competing super-
fluid and crystalline phases correspond to XY ordered
magnetic and spin density wave (SDW) phases [13, 34].

Preparation and Detection—Next, we consider a pos-
sible route to preparing the ν = 1/2 fractional Chern
insulator. In current polar molecule experiments, the
spin-flip “vacuum”, corresponding to all sites in the |↓〉
state, may be prepared with high fidelity from Feshbach
molecules by two-photon stimulated Raman adiabatic
passage [24, 36, 37]. If the phase boundaries surround-
ing the FCI state are second order, one might attempt
to prepare this state by adiabatically tuning the electric
field across the transition. However, the only known con-
tinuous transition between a superfluid and the ν = 1/2
FCI phase is multicritical [38], which suggests that this
phase boundary is generically first order, consistent with
the numerics presented in the inset of Fig. 3d. On the
other hand, continuous Mott insulator to FCI transi-
tions are less finely tuned and may constitute a promis-
ing avenue for preparation. In particular, the striped
solid phase may be reduced to a simple non-translation-
symmetry breaking Mott insulator in the presence of a
one-dimensional superlattice potential. This observation
is consistent with the existence of a weaker, finite-size,
cross-over at the FCI to striped-solid phase boundary
(inset Fig. 3d).

As probe light couples directly to the rotational motion
of the dipoles, it is possible to measure the single spin-flip
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FIG. 3. Evidence for ν = 1/2 FCI state. (a) Exact diago-
nalization of the full Hamiltonian at ν = 1/2 with a total of
Ns = 24 sites and Nb = 6 hardcore bosons. The electric field
and driving parameters are identical to those used in Fig. 2b.
To avoid self-interaction, we truncate the dipolar terms at or-
der 1/(3R0)3. There exist two degenerate ground states in
momentum sectors (kx, ky) = (0, 0) and (kx, ky) = (−π, 0)
consistent with a ν = 1/2 FCI state on a torus (kx, ky are
crystal momenta). (b) Finite size scaling from Ns = 16 to
Ns = 44 suggests a stable spectral gap in the thermodynamic
limit. (c) Quasihole counting for the same parameters as in (a)
with a single boson removed (Nb = 5). There exists a clear
gap below which there are 36 low-energy quasihole states,
consistent with the analytical counting formula for Qtorus

[2]. (d) Filling fraction as a function of chemical potential,
µ = ENb+1−ENb (where ENb is the ground state energy with
Nb bosons). Below ν = 1/2, there exists evidence of a clear
compressible superfluid state, while at ν = 1/2, there exists a
plateau indicative of an incompressible quantum liquid. This
plateau can also be interpreted as a magnetization plateau in
the language of frustrated magnetism [13, 14]. (inset) Depicts
dE/dΘ0 as a function of tilt Θ0. Phase transitions between
the superfluid, Chern insulator and striped solid are evidenced
as jumps in dE/dΘ0; the plateaus are rounded owing to finite
size effects and the kink in the superfluid region arises from
a jump between a zero-momentum and finite-momentum SF
ground state. Curves from top to bottom are for increasing
electric field strength from E = 0.4− 8 kV/cm.

response of the system in order to detect and then charac-
terize the FCI state. For example, the spectral function
can be measured at finite energy and momentum using
two-photon Bragg spectroscopy, providing direct infor-

mation regarding fractionalization [45–47]. On the edge,
one should observe gapless chiral Luttinger liquid behav-
ior, while in the bulk, the response should exhibit a gap
to the multi-quasiparticle continuum. Such a gap mani-
fests as an effective “magnetization” plateau as shown in
Fig. 3d [13].

Experimental Realization— Our proposal can be car-
ried out in currently available ultracold polar molecules,
such as 40K87Rb [23], 7Li133Cs [37], 41K87Rb [36] and
87Rb133Cs [40–42]. The temperature scales associated
with the FCI gap are set by the dipolar interaction
strength. For a typical polar molecule with d ∼ 3 De-
bye, the interaction at 532nm (optical lattice spacing)
corresponds to ∼ 1µK. With ground state molecules of
both KRb and RbCs at temperatures of ∼ 100nK, this
suggests that current generation experiments can indeed
realize stable FCI phases [24, 39, 41, 42, 44]. Moreover,
it may be possible to work at significantly smaller optical
lattice spacings (340nm for KRb and 395nm for RbCs),
further enhancing the dipolar temperature scales [43].

Here, we focus on 40K87Rb. For the optically excited
states |e1〉 and |e2〉, we propose the |J ′,m′〉 = |2,±2〉
rotational states of the v′ = 41 vibrational level of the
(3)

1
Σ+ electronic state. These states harbor a strong

640 nm transition to the ground state [24, 36]. We
require a hierarchy of energy scales corresponding to,
Hlattice . Hhf � Ωi � ∆ (Fig. 1b), where Hlattice

describes the optical lattice potential and Hhf char-
acterizes the molecule’s hyperfine structure [24]. For
40K87Rb, this hierarchy is easily realized since Hhf ∼ 1
MHz, while ∆ = 160 MHz at a moderate DC field
strength, E = B/d ≈ 0.5kV/cm. By ensuring that
the optical dressing (Ωi) is weak relative to the splitting,
E1,0−E1,1, we can employ frequency selection during the
creation of the M -scheme [44]; meanwhile, the condition
Hlattice . Hhf � Ωi allows us to consider hyperfine and
tensor light-shift effects only after the dark state (|↑〉) is
already defined [44].

While we have focused our discussion on polar
molecules, our proposal can, in fact, be realized in any
system composed of electric or magnetic dipolar inter-
acting generalized spins; such degrees of freedom are
found in a diverse array of contexts ranging from mag-
netic atoms and Rydberg ensembles to solid-state spins
[22, 48, 49]. In particular, for exchange coupled electronic
spin dimers or hyperfine coupled nuclear and electronic
spins, one finds an effective level-structure nearly identi-
cal to that depicted in Fig. 1b. The dipolar interaction
between such coupled spins also yields topologically non-
trivial, flat, spin-flip band-structures, enabling the po-
tential realization of a solid-state Chern insulator [50].
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