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This Letter presents the first numerical verification for the bounce-harmonic (BH) resonance phe-
nomena of the neoclassical transport in a tokamak perturbed by non-axisymmetric magnetic fields.
The BH resonances were predicted by analytic theories of neoclassical toroidal viscosity (NTV), as
the parallel and perpendicular drift motions can be resonant and result in a great enhancement of
the radial momentum transport. A new drift-kinetic δf guiding-center particle code, POCA, clearly
verified that the perpendicular drift motions can reduce the transport by phase-mixing, but in the
BH resonances the motions can form closed orbits and particles radially drift out fast. The POCA
calculations on resulting NTV torque are largely consistent with analytic calculations, and show that
the BH resonances can easily dominate the NTV torque when a plasma rotates in the perturbed
tokamak and therefore is a critical physics for predicting the rotation and stability in ITER.

Tokamaks are highly sensitive to non-axisymmetric
magnetic fields, which can be generated by intrinsic error
fields, magnetohydrodynamic (MHD) activities, and/or
externally applied magnetic perturbations. It has been
well-known that even a small magnetic perturbation of
order of |δB/B| ∼ 10−4 can dramatically modify toka-
mak transport and thereby various macroscopic stabil-
ities such as locked modes, edge localized modes, and
resistive wall modes [1–4].

One of the important effects caused by the non-
axisymmetric magnetic perturbations is the modification
of the radial transport of toroidal momentum. This has
been called neoclassical toroidal viscosity (NTV), as the
toroidal rotation can be largely damped or changed with
the toroidal symmetry-breaking magnetic perturbations.
The toroidal rotation changes associated with the NTV
have been well accepted in theory [5–7], and also widely
observed in experiments with magnetic perturbations in
various devices such as NSTX [8–10] and DIII-D [11, 12].
The toroidal rotation is an important parameter to de-
termine the tokamak stability, from the macroscopic to
the microscopic scale, and thus scientific interests on the
NTV and the control of the toroidal rotation through the
NTV have been rapidly increased.

The NTV physics is featured by complicated paramet-
ric dependencies. The collisionality is one of critical pa-
rameters, as well known by the 1/ν regime [13] in the rel-
atively high collisionality and the ν−

√
ν regime [14] with

the very low collisionality. The ~E × ~B precession drift is
another dominant parameter [15], as the very low ~E × ~B
precession rate ωE can lead to the superbanana plateau
regime [16]. Analytic treatments have been quite suc-
cessful to capture the essential physics in these regimes,
but in practice the connection among different regimes
is required to make a prediction in tokamaks, which are
almost always composed of multiple regimes across the
volume [17, 18].

There is an important missing component, however,
in the connection between each analytic treatment for
each regime, the bounce-harmonic (BH) resonance. The
BH resonance was predicted first by Linsker and Boozer
[19] and Mynick [20] and reformulated by Park [17] as
essential physics to determine the NTV transport un-
less ωE is extremely low, but has never been verified by
experiments or numerical simulations so far. The BH
resonances occur when the parallel bounce motions are
resonant with the perpendicular ~E× ~B motions. That is,
when the precession rate ωE is comparable to the bounce
frequency ωb, the particles can return back to the same
turning point after a few or a number of toroidal rota-
tions, i.e., ℓωb ∼ nωE where ℓ is the digit representing the
bouncing class of particles [17] and n is the toroidal mode
number of perturbations. Since there are almost always
a small number of particles that satisfy ℓωb ∼ nωE con-
dition in a Maxwellian distribution, the BH resonances
change the NTV prediction. Also note that it is the only
mechanism to enhance the NTV transport in the high
ωE .

The physics of the BH resonances was rather clear by
theory, but the simplified collisionality to connect all the
regimes including the BH resonances requires a serious
numerical verification using the realistic collisional op-
erator. Modification of particle orbit and transport by
non-axisymmetric fields are essential in NTV physics,
thus particle simulation has a benefit to study the BH
resonance as well as fundamental NTV physics. Indeed,
this simulation gives a new finding of orbit evolutions of
charged particles confined in magnetic field by electric
field and its resonance with parallel and perpendicular
motion of particles. This Letter shows a new type of
bounce orbits created by BH resonances and provides
the first successful verification of the BH resonances in
NTV using a new drift-kinetic δf guiding-center particle
code.
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FIG. 1. 3D particle trajectories of the closed orbit with ~E×
~B

(Red) compared to the original banana orbit without ~E × ~B
(Blue) in the non-axisymmetric configurations for (a) (ℓ, n) =
(1, 1) and (b) (ℓ, n) = (1, 3). The closed orbit of the ℓ-class
particle toroidally circulates ℓ cycles for n bounces as shown.

The new code, POCA (Particle Orbit Code for
Anisotropic pressures), has been successfully developed
and shows various essential NTV features, such as the
quadratic δB dependency, the 1/ν and ν−

√
ν behav-

iors including the superbanana plateau, qualitatively and
quantitatively in the zero ωE limit [21]. As will be briefly
introduced later, the POCA simulation precisely follows
the guiding-center orbits without approximations such as
the regime separation, the limitation on trapped parti-
cles, the zero-banana-orbit width, the large-aspect-ratio
approximation, or the simplified collisionality. The high-
light of the extended POCA simulations that include
~E × ~B is the clear verification of the BH resonances by
periodically closed orbits, which can be understood as
modified banana orbits effectively without the ~E× ~B pre-
cession drift.

Figure 1 shows typical examples for a modified banana
orbit of a particle by the fast ~E × ~B drift motion (Red),

compared to the original banana motion without ~E × ~B
(Blue). Fig. 1 (a) is for (ℓ, n) = (1, 1) with ǫ = 0.25
and (b) is for (ℓ, n) = (1, 3) with ǫ = 0.5, where ǫ is the
inverse aspect-ratio. Here the magnetic drift motion will
be ignored in a moment for simplification. Both orbits
are effectively not moving through periods, although one
case (Red) includes the fast ~E × ~B precession. One can
see from the Red trajectories in Fig. 1 that the toroidal
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FIG. 2. Projections of particle orbits on the poloidal cross-
section at near-zero, off-resonant, and near-resonant preces-
sions. Particles radially drift fast at the near-zero precession
(superbanana plateau - Black) and at the near-resonant pre-
cession (BH resonance - Red), while the drifts are decreased at
the off-resonant precessions (Blue, Green) due to the random
phase-mixing.

motion is fast when the particle moves up from the lower
to the upper turning point and is slow when the particle
moves down, since the parallel bounce motion and per-
pendicular ~E× ~B drift can be added or subtracted for the
toroidal motion. In both cases, the particle can radially
drift out fast with a non-axisymmetric perturbation, due
to the absence of phase-mixing effects. When a magnetic
perturbation is applied, a particle can drift off the mag-
netic surface since the action J =

∮

Mv‖dl can be no
longer conserved within the surface. The radial drift can
be random, but will be rapidly increased to one direction
when orbits are nearly closed.

The increase of the radial drift by closed orbits is
clearly illustrated in Figure 2, where particle trajecto-
ries at near-zero precession, off-resonances, and near-
resonance are shown for the same time interval. Here
collisions are not introduced for better graphical illustra-
tion, and a magnetic perturbation (m,n) = (7, 3) with
the poloidal mode number m is applied to produce the
radial drift in the absence of collisions. The large ra-
dial drift can be seen by the ωE ∼ 0 case in Fig. 2,
as orbits are nearly closed without the precession, as of-
ten called the superbanana plateau resonance [16]. As
ωE is increased (3ωE < ωb), one can see the decrease
of the radial drift, which is due to the random phase-
mixing. When ωE approaches the first BH resonant fre-
quency (3ωE ∼ ωb), the radial drift increases since the
phase-mixing is not effective with closed orbits. If ωE is
further increased (3ωE > ωb), the drift decreases since
the phase-mixing takes effects again. Note here that the
radial drifts are enhanced actually by nearly closed or-
bits, not by perfectly closed orbits, as the slight toroidal
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reposition of orbits is needed for orbit evolutions through
different |B|. However, there is no distinction for the ef-
fects in the presence of collisions, which can move the
closed orbits to different toroidal positions as the slight
off-resonant ~E × ~B does.
Another important aspect in the BH resonances is the

modification of the resonant magnetic perturbation. It
is often believed that the NTV is driven by non-resonant
magnetic perturbation, but the NTV transport is the
largest when the magnetic perturbation satisfies the res-
onant condition m − nq = 0 with safety factor q, as de-
scribed in details by [21]. The resonant condition actually
means that the wavefront of the magnetic perturbation is
the same as the helical pitch of the equilibrium magnetic
field, or equivalently the path of the bounce orbits with-
out the ~E× ~B precession, the blue trajectories in Fig. 1.
When the bounce orbits are modified by the ~E× ~B preces-
sion, the wavefront of the resonant perturbation should
also be shifted to follow the path of the modified bounce
orbits, the red trajectories in Fig. 1. This is predicted
by theory with the condition m− nq ± ℓ = 0. Magnetic
perturbations in Figures 1 and 2 are actually chosen to
meet the shifted resonant condition. For Fig. 1 (a), the
(m,n) = (3, 1) perturbation is applied on the q = 4 sur-
face, and for Fig. 1 (b) and Fig. 2, the (m,n) = (7, 3)
perturbation is applied on the q = 8/3 surface to produce
the ℓ = 1 BH resonances. If a non-resonant perturbation
is applied, for instance (m,n) = (8, 3) to q = 8/3 surface,
each of three periods will experience different perturba-
tions and thus the resonant enhancement can be largely
decreased even though the orbits will repeat after three
periods.
The described nature has been previously predicted

by analytic theory, but the study with the POCA code
verifies the existence and essential feature of the BH res-
onances. The theory can be summarized by an analytic
NTV formula, which is given as

τϕ =
ǫ1/2p√
2π3/2R0

∫ ∞

0

dxR1ℓ

∫ 1

0

dκ2δ2wℓ

[

ωϕ − ωnc

]

, (1)

where

δ2wℓ =
∑

nmm′

δ2nmm′

F
−1/2
nmℓ F

−1/2
nm′ℓ

4K(κ)
,

R1ℓ =
1

2

n2(1 + ( ℓ2 )
2) ν

2ǫxe
−x

(ℓωb − nωE − nωB)2 + ((1 + ( ℓ2 )
2) ν

2ǫ)
2x−3

,

with p the pressure and R0 the major radius.
Here normalized variables x ≡ E/T and κ2 ≡
(E − µB0(1− ǫ)) /2µB0ǫ are used with kinetic en-
ergy E, temperature T , and magnetic moment
µ. Given a magnetic field model B = B0(1 −
ǫ cosϑ) + B0

∑

nm δnme
i(mϑ−nϕ) with B0 the toroidal

magnetic field at the magnetic axis, δ2nmm′ ≡
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FIG. 3. NTV torque scan as a function of radial electric field
at (a) q = 6/3 surface and (b) q = 8/3 surface, where BH
resonances appear for n = 3 perturbations and ℓ = 1 class
particles. NTV peaks by the BH resonances are clearly found
around the predicted resonant Er.

Re(δnm)Re(δnm′) + Im(δnm)Im(δnm′), F y
nml(κ) =

∫ ϑt

−ϑt

dϑ(κ2−sin2(ϑ/2))y cos[Θnmℓ(ϑ)] with Θnmℓ ≈ (m−
nq ± ℓ)ϑ and ϑt = 2 arcsin(κ), and K is the complete el-
liptic integral of the first kind. The resonant precession
condition is represented by (ℓωb − nωE − nωB)

2 in the
denominator of R1ℓ in the first integral, and the resonant
field condition can be found by the fact that δ2wℓ in the
second integral is the largest when m− nq ± ℓ = 0. The
last term represents the effect of neoclassical offset rota-
tion ωnc [11]. See Ref. [17] for more details. This com-
bined NTV theory presently gives the NTV torque by
the BH resonances uniquely, so the formula was used for
quantitative comparison of BH resonant frequency and
NTV with the POCA simulation.

The POCA solves a set of Hamiltonian orbit equations
for the toroidal flux ψ, the poloidal angle ϑ, the toroidal
angle ϕ, and the parallel gyroradius ρ‖ = Mv‖/qB
[21, 22]. It tracks the guiding-center orbit motion by
solving the equations of motion in Boozer coordinates.
Then POCA calculates the neoclassical transport from
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the Fokker-Planck equation with δf Monte Carlo method
[23]. Noting the distribution function f can be approx-

imated as f = fM + δf = fM exp(f̂) ≈ fM (1 + f̂) in
the fusion plasmas with fM the local Maxwellian, δf the
perturbed distribution function, and f̂ the deviation from
Maxwellian, the Fokker Planck equation is written as

d ln fM
dt

+
df̂

dt
= Cm, (2)

where Cm = C/f and C is the collision operator. Eq. 2
is rewritten as

df̂

dt
= −~v · ~∇ψ∂ ln fM

∂ψ
+ Cm, (3)

and f̂ is obtained from following equation,

∆f̂ = −∆ψ
∂ ln fM
∂ψ

+ 2ν
u

v
λ∆t−∆ψ

e

T

dΦ

dψ
, (4)

with ν the collision frequency, u the parallel flow velocity,
λ the pitch-angle, and e the electric charge. A modified
pitch-angle scattering collision operator is employed us-
ing Monte Carlo equivalent of pitch-angle collision oper-
ator [24] which updates λ by pitch-angle scattering, and
a momentum correction term [23, 25] is added to the col-
lision operator for conserving the toroidal momentum.
The first term in the right hand side of Eq. 4 repre-
sents δf driven by particle drift motions, and the second
term by the toroidal momentum conservation. The third
term represents the effect of electric potential Φ, which
is directly related to ~E× ~B rotation and the electric pre-
cession by radial electric field Er = −dΦ/dr. Finally, the
POCA code estimates the NTV torque by calculating
the perturbed pressures and utilizing the magnetic field
spectrums as τϕ = 〈eϕ · ∇ ·P〉 = 〈δP/B · ∂B/∂ϕ〉 with
eϕ = ∂x/∂ϕ [26]. δP is the perturbed pressure defined
by δP =

∫

d3v(Mv2⊥/2 +Mv2‖)δf , and brackets denote
the flux surface average. In this study, we apply an an-
alytic non-axisymmetric field perturbation expressed as
δB/B0 = δmn(ψn) cos(mϑ−nϕ) with ψn the normalized
poloidal flux, then the NTV torque is calculated by

τϕ = B0nδmn

〈

δP

B
sin (mϑ− nϕ)

〉

. (5)

For quantitative comparison of the NTV torque, an
example is set by a single harmonic perturbation with
δmn = 0.02ψ2

n and (m,n) = (7, 3) to a model plasma in
Ref. [21], where Ti,0 = 500 eV, B0 = 10 T, R0 = 10
m, a = 2.5 m, q0 = 1.2, qedge = 11.0, and ν∗ ∼ 1.0.
The NTV torque is calculated by scanning the electric
precession frequency. According to the combined NTV
theory, the BH resonances should occur at ωE ∼ ωb/3
for n = 3 perturbations and ℓ = 1 class particles, where
Er ∼ ±7 kV/m for the model plasma. Fig. 3 shows the
NTV torques as a function of radial electric field Er at

q = 6/3 and q = 8/3 surface, where ℓ = 1 class particles
satisfy the resonant field condition m − nq ± ℓ = 0 with
the applied perturbations.
In Fig. 3, both POCA and theory calculations indicate

clear NTV peaks enhanced by the BH resonances. The
resonant ~E× ~B frequency for the peak NTV by the POCA
simulation is consistent with the theory prediction, indi-
cating the importance of BH resonances. The amplitudes
of NTV agree within a factor of 2 ∼ 3. The NTV peaks
appear broad, since ωb and ωE are continuous functions
of plasma parameters and there is a small fraction of res-
onant particles of ℓ > 1. It is notable that the enhanced
NTV can be even stronger than the theoretically pre-
dicted value. It may be largely due to finite-orbit-width
and passing particle effects, which are excluded in the
combined theory. These effects are obviously more im-
portant when the ~E× ~B rotation is stronger, as the POCA
simulation largely improved the prediction on NTV in
the magnetic braking experiments for NSTX with fast
precession and large orbit width [27]. Note that the BH
resonances can occur at every flux surface since the non-
axisymmetric magnetic perturbations are composed of
multi-harmonic Fourier series, of which a certain compo-
nent can meet the resonant field condition at the surface.
Also there is always a fraction of particles with low en-
ergy and bounce frequency in a Maxwellian distribution.
These particles can resonate even with the low ~E × ~B
precession and thus enhance the NTV.
In summary, this POCA simulation firstly verifies the

bounce-harmonic resonance and its crucial role in NTV
physics. It is clearly shown that the electric precession
modifies a banana orbit to new type of closed orbit, and
significantly enhances the particle transport by prevent-
ing the phase-mixing when the precession frequency be-
comes resonant. As a result, the bounce-harmonic reso-
nances can greatly enhance the NTV torque. This Let-
ter shows the bounce harmonic resonance is the critical
physics driving NTV in the finite ~E × ~B rotation and
thus should be accounted for reliable prediction of par-
ticle transport and NTV in the present tokamaks and
ITER.
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