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In the present Letter we use the Direct Numerical Simulation (DNS) of the Navier-Stokes equations
for a two-phase flow (water and air) to study the dynamics of the modulational instability of free
surface waves and its contribution to the interaction between ocean and atmosphere. If the steepness
of the initial wave exceeds a threshold value, we observe wave breaking events and the formation
of large scale dipole structures in the air. Because of the multiple steepening and breaking of the
waves under unstable wave packets, a train of dipoles is released in the atmosphere; those dipoles
propagate at a height comparable with the wave length. The amount of energy dissipated by the
breaker in water and air is considered and, contrary to expectations, we observe that the energy
dissipation in air is larger than the one in the water. Possible consequences on the wave modelling
and on the exchange of aerosols and gases between air and water are discussed.

PACS numbers: Valid PACS appear here

The modulational instability, also known as the Ben-
jamin Feir instability, is a well known universal phe-
nomenon that takes place in many different fields of
physics such as surface gravity waves, plasma physics,
nonlinear optics (see the recent historical review [1]). The
basic idea consists in that a sufficiently steep sinusoidal
wave train may become unstable if perturbed by a long
enough perturbation; as a result of the modulation, a
single wave in the group may reach an amplitude that it
is at most 3 times the initial one [2, 3]. It is a thresh-
old mechanism, therefore, for example, for surface grav-
ity waves in infinite water depth a wave is unstable if
2
√
2k0A0 > ∆k/k0, where k0 is the wave number of the

sinusoidal wave (carrier wave), ∆k is the wave number
of the perturbation and A0 is the amplitude of the ini-
tial wave. The modulational instability, discovered in
the sixties, has recently received attention because it has
been recognized as a possible mechanism of formation
of rogue waves [4, 5]. The standard mathematical tool
used to describe such physical phenomena is the Nonlin-
ear Schrördinger equation (NLS), i.e. a weakly nonlin-
ear, narrow band approximation of some primitive equa-
tions of motion. The beauty of such equation is that it
is integrable and many analytical solutions can be writ-
ten explicitly. For example, breather solutions [3] have
been considered as prototypes of rogue waves [6, 7]; they
have been observed experimentally both in surface grav-
ity waves and in nonlinear optics [2, 8–10].

Concerning ocean waves, besides the NLS approach,
computations of non-viscous, fully nonlinear, potential
equations have been performed [11, 12]. However, such
approach only predicts the breaking occurrence but does
not furnish any prediction beyond the breaking onset.

Moreover, so far none of the aforementioned literature
has ever considered the effects of the modulation insta-
bility on the fluid above the free surface. As far as we
know this is the first attempt in which the dynamics of
air on water during the modulation process is investi-
gated. This has been possible by simulating the Navier-
Stokes equation for a two phase flow. This approach
allows us to investigate conditions that are beyond the
formal applicability of the NLS equation: for example, it
is well known that if the initial wave steepness is large
enough, the NLS equation is not able to describe accu-
rately the dynamics because wave breaking takes place
[13, 14]. For steep waves and particularly those close to
the breaking onset, vorticity is generated by viscous ef-
fects at the interface and by the topological change of
the interface in case of bubble entrainment processes.
Breaking of surface waves, as an oceanic phenomenon
[15], is important across a very broad range of applica-
tions related to wave dynamics, atmospheric boundary
layer, air-sea-interactions, upper ocean turbulence mix-
ing, with respective connections to the large-scale pro-
cesses including ocean circulation, weather and climate
[16]. Modulational instability has become also relevant in
engineering applications [17] for studying the interaction
of waves and structures.

In the present work the two fluids are approximated as
a single one with density and viscosity smoothly vary-
ing across the interface. The continuity and momen-
tum equations (Navier-Stokes) are discretized over a non-
staggered grid layout with a second order finite differ-
ence scheme. Cartesian velocities, pressure and physical
properties are defined at the center of the cells, whereas
volume fluxes are defined at the mid-point of the cell
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faces. A fractional step approach is used: the pressure
contribution is neglected when integrating the momen-
tum equation (Predictor step) and it is reintroduced af-
ter the continuity equation is enforced (Corrector step)
(see [18, 19] for a more detailed discussion on the numer-
ical method). The jump in the fluid properties is spread
across a small neighborhood of the interface. A similar
spreading is used for the surface tension forces for which a
continuum model is adopted [20]. The air-water interface
is captured as the zero level level of a distance function
from the interface d(x, t) that, at t = 0, is initialized as
d > 0 in water and d < 0 in air. Fluid properties are
related to the distance d by the equation:

f(d) = fa + (fw − fa)Hδ(d) (1)

where Hδ(d) is a smooth step function and δ is the half-
thickness of the transition region. The distance function
is advected by the velocity field u by the equation

∂d

∂t
+ u · ∇d = 0, (2)

and the interface is located as the d = 0 level. The above
equation is discretized with the same scheme adopted for
the convective terms in the Navier-Stokes equation and
it is integrated in time using a third order Runge-Kutta
scheme. At the end of the step the free surface is located
as the d = 0 level and the distance is reinitialized. The
numerical model has been carefully validated in previ-
ous works [19, 21]. The analysis showed that accurate
solutions can be obtained provided the transition region
covers a sufficiently large number of grid points. Five
grid points are generally enough, [19], but the minimum
number depends to some extent on the Reynolds number.
In our simulations we consider the standard modula-

tional instability process as, for example, the one pro-
duced experimentally in [22]. The initial surface elevation
is characterized by a perturbed sinusoidal free surface el-
evation:

η(x, t = 0) = A0 cos(k0x) + A1(cos(k
+x) + cos(k−x)),

(3)
where η(x, t) denotes the free surface elevation at location
x and time t, k0 is the wave number of the carrier wave
and k± = k0±∆k with ∆k the wavenumber of the pertur-
bation. In equation (3) A0 and A1 indicates the ampli-
tude of the fundamental and of the perturbation compo-
nents, respectively. The simulations presented hereafter
are characterized by a steepness ǫ0 = k0A0 that is varied
from 0.1 to 0.18, with a step 0.02. The sideband com-
ponents are placed at ∆k = k0/5 and their amplitude
is A1 = 0.1A0. The conditions are essentially similar to
those used in [12, 23] and corresponds to the early stages
of an Akhmediev breather [3].
Because the typical time scale of the modulational in-

stability is of the order of 100 periods, in order to re-
duce the computational effort, the initial development

of the instability is described by a fully-nonlinear, po-
tential flow model. Hence, some instants before the on-
set of the breaking the potential flow solution is used as
initial condition for the Navier-Stokes simulations [24].
We underline that, differently from the present work, in
[18, 25] the initial conditions which lead to breaking were
characterized by a steep (ǫ0 > 0.33) third order Stokes
wave (without any perturbation) that broke after a few
wavelength and no modulational instability process was
investigated.

In the following, for convenience, results are presented
in dimensional form. Simulations are carried out for a
carrier wave of wavelength λ0 = 0.60 m, with g = 9.81
m s−2. The computational domain spans from x = -1.5
m to x = 1.5 m horizontally and from y= -2 m up to
y = 0.6 m above the still water level vertically. It is
discretized with a uniform grid spacing in the horizontal
direction with ∆x = 1/1024 m. Vertically, from y = -
0.15 m to 0.15 m, the grid spacing is uniform and equal to
∆x; whereas it grows geometrically by a factor α= 1.03
towards the upper and lower boundaries. This gives a
total of 3072 × 672 grid cells (numerical simulations have
been performed also on coarse grid 1536×336 in order to
see the effects of the resolution). The total thickness of
the transition region is 0.01 m, so that the density jump
is spread across about 10 grid cells. The surface tension
is included in the Navier-Stokes simulation and taken as
σ = 0.073 N m−1; the following values of densities and
viscosity of air and water are considered: ̺w = 1000 kg
m−3, ̺a = 1.25 kg m−3, µw = 10−3 kg m−1 s−1 and
µa = 1.8 10−5 kg m−1 s−1.

The process observed in the simulation corresponds
to the standard modulational instability (exponential
growth of the side bands) up to the point where the
wave group reaches its strongly nonlinear regime. For
ǫ0 = 0.10 the perturbation reaches a maximum and then
return back to the original conditions. This is not the
case for ǫ0 ≥ 0.12 for which wave breaking is observed,
(see also [12]). In figure 1 a breaking event is shown
for ǫ0 = 0.18. The sequence shows the formation of the
jet, which plunges onto the water and entraps air. The
jet then bounces on the free surface and plunges again
onto the free surface, thus leading to the entrainment of
a second air bubble. A few droplets of water in air are
also visible; a small amount of vorticity is also released
beneath the surface.

Of particular interest is the dynamics of the air flow.
In figure 2 we show a sequence of snap-shots of the wa-
ter and air domain where the formation and detachment
of a dipole structure is highlighted for ǫ0 = 0.16. The
fast steepening of the wave profile and the subsequent
breaking causes the air flow to separate from the crest
giving rise to a large, positive-vorticity structure (posi-
tive vorticity is in red). This vortex structure interacts
with the free surface leading to the formation of vortic-
ity of opposite sign; eventually a dipole is generated and
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FIG. 1: Breaking event for ǫ0= 0.18. The color corresponds
to the vorticity field: green corresponds to zero vorticity, blue
to -20 sec

−1 and red to 20 sec
−1.

propagates upwards under the self-induced velocity. It is
worth noticing that the occurrence of flow separation and
the strong vorticity production are strongly enhanced by
the breaking occurrence, whereas such phenomenon was
not found in the nonbreaking case with ǫ0 = 0.10.

Because the group velocity is half the phase velocity,
each single wave that passes below the group (at its maxi-
mum height), breaks. The result is that a series of break-
ing events take place and dipoles are released into the
atmosphere as shown in figure 3. Two things should be
noted: i) the height of the highest dipoles is of the or-
der of the wavelength; ii) a large amount of vorticity is
observed in the air and not in the water. One major
question to be answered, especially in the spirit of mod-
elling the dissipation term in the wave forecasting models
[26, 27] is the amount of energy dissipated during a wave
breaking or a sequence of breaking events. Therefore,
a quantitative estimate of the dissipated energy both in
air and water can be obtained by integrating the viscous

FIG. 2: Formation of a dipole in air as a consequence of the
wave breaking. Results refer to ǫ0= 0.16

FIG. 3: Vorticity field in a portion of the computational do-
main for initial steepness ǫ0 = 0.18. The scale of vorticity
is as described in the label of figure 1. The supplemental
material contains the animation of the simulation (file: ani-
mation18.avi).

stresses over the air and water domains:

εwdiss(t) = µw

∫
d≥δ

2eij
∂ui

∂xj

dx dy, (4)

εadiss(t) = µa

∫
d<−δ

2eij
∂ui

∂xj

dx dy, (5)



4

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0  2  4  6  8  10  12

ε d
is

s 
T

/E
w

0

t/T

C,w
C,a
F,w
F,a

FIG. 4: Dissipation nondimensionalized with period T and
total energy in the water, E0

w
at t = 0, as a function of nondi-

mensional time for water (red lines) and air (blue lines). The
initial steepness is 0.12. Solution for fine (F) and coarse (C)
grid are plotted.
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FIG. 5: Same as Fig. 4 but for an initial steepness of 0.16.

where eij is the symmetric part of the strain tensor. In
figures 4 and 5 we show the dissipation functions in air
and water normalized by the initial energy of the water
and wave period, T , as a function of time, nondimen-
sionalized by T , for simulations with steepness ǫ0 = 0.12
and ǫ0 = 0.16, respectively; the origin of the time axis
is set to the time at which the Navier Stokes simulations
takes over potential code simulation. Both curves display
a recurrent growth of the dissipation levels concurrent
with the breaking events. The results indicate that an
energy fraction is first transferred to the air during the
steepening and breaking processes and then dissipated
by the viscous stresses afterwards. The figures also in-
clude the simulations performed on a coarser grid. As
expected, because of the chaotic behavior of the Navier-
Stokes equation, the breaking (which is related to the
peaks in the figures), being a threshold mechanism, does
not happen exactly in the same place with the same in-
tensity in the two simulations with different resolution.
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FIG. 6: Integrated dissipation for different values of the steep-
ness in water (w) and air (a).

Nevertheless, from both simulations, one can evince that
the dissipation is higher in the air than in the water.
In order to show how relevant is the energy dissipa-

tion in the air in comparison to the corresponding one in
water, we consider the following integrated quantity:

Ediss(t) =

∫ t

0

εdiss(t
′)dt′. (6)

The integral is considered for both water and air. The
time histories of the integrals of the viscous dissipation
terms in the two media are shown in figure 6 for the four
different steepnesses. It is interesting to observe that, in
nondimensional form, the solutions for the four different
cases almost overlap; at the end of the simulations the
total energy fraction dissipated in the air is about three
times that in water.
Discussion - Modulated waves of different initial steep-

nesses have been analyzed using the two phase flow NS
equation. For initial steepness larger or equal to 0.12,
multiple breaking events have been observed. Spray is
the natural consequence of the wave breaking. Droplets
of water are thrown in the air; some of these particles
are so small (aerosols) that they can remain in the air
for a very long time, forming condensation nuclei and
affecting incoming solar radiation.Vortices, observed in
our simulations, can in principle transport aerosols (not
resolved in our simulations) up to the height of the wave
lengths (this can be even underestimated because of the
presence of the solid boundary at the top of the compu-
tational domain). Such phenomena may be relevant for
climate modelling.
Even bearing in mind the limitations of the numerical

scheme, the results indicate that in the present case (i.e.
breaking due to modulational instability) the dissipation
of the energy is mostly concentrated in the air side. We
stress that it is a common practice to estimate the energy
loss due to wave breaking by looking at the amount of en-
ergy dissipated in the water, see for example [28]. Such
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measurement are the bases for the construction of the
dissipation function in the operational wave forecasting
modelling [27]. We also underline that our simulations
correspond to the propagation of waves without the pres-
ence of external wind: what would be the consequences
of a turbulent wind on the generation of vorticity during
breaking event is under investigation.
Another important limitation of the simulations con-

cerns the use of a two-dimensional assumption for the
flow, i.e. long crested waves. We expect that three-
dimensional effects may take place and alter the dynam-
ics of the breaking process and of the associated vorticity
production.
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