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We study the intermittency of fluid velocities in porous media and its relation to anomalous dis-
persion. Lagrangian velocities measured at equidistant points along streamlines are shown to form
a spatial Markov process. As a consequence of this remarkable property, the dispersion of fluid
particles can be described by a continuous time random walk with correlated temporal increments.
This new dynamical picture of intermittency provides a direct link between the microscale flow, its
intermittent properties, and non-Fickian dispersion.

The heterogeneity of natural flows strongly affects
transport, mixing and chemical reactions, including con-
taminant spreading, effective reaction kinetics and bio-
logical activity [e.g. 1–9]. In porous media the complex-
ity of flow arises from the heterogeneous medium struc-
ture [10]. This induces non-Gaussian velocity distribu-
tions, which can lead to a persistent non-Fickian disper-
sion regime [3, 11–13]. Various stochastic models have
been proposed to represent this property, with very dif-
ferent underlying mechanisms, such as mobile-immobile
mass exchange, long-range correlated spatial motions or
heavy-tailed trapping time distributions [14–18]. These
different models may provide equally good fits to data,
such as first passage time distributions [19, 20]. Yet, their
implications can be dramatic when transport controlled
processes are considered, such as chemical reactions or
biofilm growth [7, 19]. A key challenge is to relate these
upscaled flow models to the microscale flow properties.
In this Letter, we demonstrate the existence of persis-
tent intermittent properties of Lagrangian velocities in
porous media and we formulate a new dynamical picture
of intermittency based on the spatial Markov property of
Lagrangian velocities. The resulting upscaled transport
model is a correlated CTRW, which is fully consistent
with the microscale flow dynamics.

We consider a two dimensional porous medium com-
posed of circular grains, with a poly-dispersed size dis-
tribution and a porosity φ = 0.42 (Fig.1). Flow is de-
scribed by the Navier-Stokes equation. No-slip condi-
tions are applied at the fluid-solid interface. A constant
pressure gradient from left to right induces fluid flow in
the pore space. Periodic boundary conditions are applied
for the flow velocity at all boundaries. The flow problem
is solved using smoothed particle hydrodynamics (SPH).
SPH is a Lagrangian particle method that represents el-
ementary fluid volumes as fluid particles which advect
with the flow. In the pore-scale flow simulations we used
the sixth-order Schoenberg spline function with the sup-
port of the weighting function h = 1. The size of the do-
main was 512×128, with 16 particles per pixel, thus, the
total number of particles is N = 1048576. The number of
fluid particles is N × φ = 1048576× 0.42 = 440402. Full
details of the method as applied to the current configura-
tion are available in [21]. Streamlines of the flow field are

Figure 1. a) The amplitude of the pore scale velocity field nor-
malized by the average Lagrangian velocity. Space is rescaled
with respect to the average pore size d = 10. The trajectory
of a Lagrangian particle is shown with red dots at equidistant
time increments ∆t = 6 · 10−2tA. Time is rescaled with re-
spect to tA = d/v, the mean advection time over the mean
pore size. b) and c) are respectively the time series of the La-
grangian velocity and acceleration for the particle trajectory
displayed on the top.

given by the Lagrangian trajectories x(t) = [x(t), y(t)]T

of the fluid particles. Figure 1a shows the simulated pore-
scale velocity field. It is characterized by high velocity
channels and localized low velocity regions.

The spreading of the fluid particles, a measure for
purely advective hydrodynamic dispersion, is charac-
terized by the mean-squared longitudinal displacement,

σ2
x(t) = 〈[∆x(t) − 〈∆x(t)〉]

2
〉 with ∆x(t) = x(t) − x(0).

Angular brackets denote the average over all fluid parti-
cles. Dispersion of the fluid particles is found to be su-
perdiffusive over two orders of magnitude in time, which
means that σ2

x evolves faster than linearly [15]; see Fig.
2. Moreover, the higher-order moments of the displace-
ment of fluid particles indicates that the dispersive pro-
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Figure 2. Normalized mean squared longitudinal displace-
ment of purely advected particles versus normalized time.
The result of the pore scale simulations is shown as blue dots,
the prediction of the correlated CTRW model is shown as a
continuous red line, and the prediction of the uncorrelated
CTRW model as a continuous green line. The Fickian scal-
ing, shown as a black dashed line, is not reached during the
simulation time. λ is the correlation length of the velocity
field, see Fig. 5. Inset: black crosses represent the scaling ex-
ponents qν(q) of the moments of the displacement ∆x for the
pore scale model; red circles represent the correlated CTRW
model, green circles the uncorrelated CTRW model.

cess is strongly anomalous [22] because the scaling expo-
nent ν(q), defined by

〈|∆x(t) − 〈∆x(t)〉|q〉 ∼ tqν(q),

is such that ν(2) > 1/2 and qν(q) is not a linear function
of q. Notice that this anomalous behavior is expected
to persist until the largest velocity correlation time as
discussed below.
A sample particle trajectory is displayed in Fig. 1a.

The time series of longitudinal Lagrangian velocities v(t)
and accelerations a(t) along the trajectory are plotted as
a function of travel time in Figures 1b and 1c. The tem-
poral behavior of Lagrangian acceleration is intermittent,
switching between low variability periods and strongly
fluctuating periods. The first behavior corresponds to
low velocity regions, where Lagrangian longitudinal ve-
locities and accelerations are small and strongly corre-
lated. The second behavior corresponds to high veloci-
ties in flow channels, where acceleration fluctuations are
large. Similar intermittent behaviors have been observed
in a series of dynamical systems including turbulent flows
[23–26], fluidized beds [27], earthquake occurrences [28],
see also the review by Friedrich et al. [7]. While this pro-
cess has not been documented to date for flow in porous
media, we argue that is a key to understanding the per-
sistence of anomalous transport regimes in such systems.
To quantify the correlation and statistics of Lagrangian
accelerations, we define the Lagrangian velocity incre-
ment associated to the time lag τ as

∆τv = v(t+ τ)− v(t). (1)

Figure 3. Probability distributions of normalized Lagrangian
longitudinal velocity increments ∆v/σ∆v(τ ) for the time lags
(blue) τ = τ0, (red) 2τ0, (green) 5τ0, (magenta) 7τ0, and
(black) 9τ0 (τ0 = 6 × 10−2tA). The curves are shifted along
the y-axis for clarity. W for each lag time . Dots represent the
pore scale SPH simulations data and the solid lines the result
of the correlated CTRW model. As the time lag increases the
probability distributions approach, without reaching, a Gaus-
sian distribution represented with the red dashed line. The
black dashed line represents the result of the corresponding
uncorrelated CTRW model for the case τ = 2τ0.

The variance of the ∆τv is denoted in the following
by σ2

∆v(τ). The probability density function (pdf) of
longitudinal Lagrangian velocity increments normalized
with respect to the standard deviation of increments,
P [∆τv/σ∆v(τ)] is plotted in Fig. 3 for different time
lags τ . For small τ , the distribution of Lagrangian veloc-
ity increments is characterized by exponential tails and
a sharp peak close to zero acceleration due to the low
velocity areas where particles are almost at rest. As τ in-
creases, the slopes of the tails increase and the sharpness
of the peak decreases, approaching a Gaussian distribu-
tion. The Gaussian shape is however not reached, even
for large τ , which is consistent with the fact the Fickian
dispersion regime is not attained during the simulation
time (Fig. 2). Note also that the sharp peak associated
with the zero velocity increment is not observed for tur-
bulent flows [23]. It is associated here with the small
velocity variations in the stagnation zones of the porous
medium.
The correlation of Lagrangian accelerations a(t) =

dv(t)/dt can be quantified by the correlation function,

χa(τ) =
〈[a(t+ τ)− 〈a〉][a(t)− 〈a〉]〉

σ2
a

, (2)

where σ2
a is the variance of Lagrangian accelerations. Fig.

4 displays the autocorrelation of longitudinal Lagrangian
acceleration a and its amplitude |a|. The correlation
function χa(τ) decreases rapidly with the time lag τ . The
slight anti-correlation at early times is likely due to the
rapid fluctuations of acceleration in high velocity chan-
nels (Fig. 1c). The correlation of the absolute value of
longitudinal Lagrangian acceleration |a(t)| decays slowly
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with an approximate power law decay (Fig. 4). Inter-
mittency is often associated with an exponential decay
of the acceleration amplitude correlation, which leads to
a fast convergence to Gaussianity [23, 24]. The persis-
tent intermittency observed here implies that the multi-
fractal formalisms often used for modeling intermittent
properties of time series in dynamical systems may not
be relevant for porous media flows. In order to identify

Figure 4. Comparison between pore scale numerical simula-
tions (solid lines) and the correlated CTRW model (dots).The
autocorrelation function χa of Lagrangian particles accelera-
tions a is represented in red and that of the absolute acceler-
ations |a| is represented in blue. The temporal evolution of
the correlation of the absolute acceleration is represented in
log-log in inset.

the model that can describe the observed intermittent
behavior, we analyze the autocorrelation function of the
longitudinal Lagrangian velocity (Fig. 5). Specifically,
we consider the autocorrelation of Lagrangian velocities
measured at equidistant times along trajectories, as well
as measured at equidistant spatial positions. In the first
case, the autocorrelation function is given by χvt(τ) =
〈[v(t+ τ) − 〈v〉][v(t) − 〈v〉]〉/σ2

vt. In the second case, it is
given by χvx(ξ) = 〈[v[t(x+ ξ)]− 〈v〉][v[t(x)] − 〈v〉]〉/σ2

vx,
where t(x+∆x) = t(x) +∆x/v[t(x)], see, e.g., Ref. [29].
The autocorrelation function χvt(τ) in time is found to
decay slowly, and approximately as a power-law with
time, χvt ∝ (τ/tA)

−0.7. The autocorrelation function
in space χvx(ξ), in contrary, is well represented by an ex-
ponential with correlation length λ = d/4 as illustrated
in Fig. 5. The oscillations in the correlation function are
due to alternation of pore body and pore throats along
particle trajectories over the mean pore size d. The ex-
istence of a finite correlation length λ allows for the def-
inition of a characteristic correlation time τc = λ/vmin

with vmin the minimum fluid particle velocity. Thus, the
non Fickian dispersion and flow intermittency regime is
expected to persist until τc.

The short range spatial correlation of Lagrangian ve-
locities implies a spatial Markov property for velocity
transitions over the correlation scale λ. This leads nat-
urally to the following correlated CTRW model for the

Figure 5. The blue dots represent the Correlation of pore
scale Lagrangian velocities in rescaled space x′ = x/d. The
black curve is an exponential fit of the data from which we
compute a correlation length of λ = d/4. In the inset the
simulated pore scale Lagrangian velocities correlation in time
t/tA.

motion of fluid particles in x–direction [29, 30]

xn+1 = xn + λ, tn+1 = tn + τn,

where the transit time τn is a Markov process, defined
by the pdf ψ(τ) of transition times and the conditional
pdf ψ(τ |τ ′) of successive transit times. Both ψ(τ) and
ψ(τ |τ ′) are determined from the simulated particle tra-
jectories. The transition time is given by τn = λ/vn
with vn the average particle velocity over λ. Hence,
the waiting time distribution ψ(τ) is related to the ve-
locity distribution pv(v), derived from pore scale simu-
lations, as ψ(τ) = pv(λ/τ)λ/τ

2. Similarly, the condi-
tional density is given in terms of pv(v|v

′) as ψ(τ |τ ′) =
pv(λ/τ |λ/τ

′)λ/τ2. Note that this formulation is fully de-
termined by the velocity field properties and does not
involve any fitting parameter. The particle density is
given by p(x, t) = 〈δ(x − xnt

)〉, where nt is the renewal
process nt = max(n|tn ≤ t). The density p(x, t) can be
described by the following system of equations

p(x, t) =

t∫

0

dt′
∞∫

t−t′

dτR(x, t′, τ) (3)

R(x, t, τ) = δ(x − x0)ψ(τ)δ(t)

+

t∫

0

dτ ′R(x− λ, t− τ ′, τ ′)ψ(τ |τ ′), (4)

with x0 the initial particle position at time t = 0.
The acceleration an in step n is related to the spatial

and temporal increments λ and τn as,

λ = vn−1τn +

∫ tn+τn

tn

dt′
∫ t′

tn

dt′′an, (5)
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where vn−1 is the velocity at the end of the previous step.
Assuming a constant acceleration over each CTRW step
and continuity of velocity at turning points, we obtain

an =
2λ

τ2n
−

2vn−1

τn
, vn = vn−1 + anτn. (6)

The correlated CTRW model correctly predicts both
the scaling and the magnitude of the dispersion scale
σx at all times (Fig. 2). Furthermore, the distribu-
tion of velocity increments obtained from the correlated
CTRW simulations for different time lags τ are in good
agreement with those obtained from the full pore-scale
simulations (Fig. 3). The correlated CTRW also pre-
dicts correctly the long-range correlation of the acceler-
ation amplitude and the slight anti-correlation of accel-
eration (Fig. 4). Note that neglecting the correlation
of successive transit times in the CTRW model (uncor-
related CTRW) leads to an underestimation of particle
dispersion, see Fig 2. It also leads to overestimation of
the probability of large velocity increments at small lag
times (Fig. 3). The effect of transit time correlation is
to reduce the probability of excessively large accelera-
tions, which would be physically inconsistent with flow
conservation. Hence, while in many applications the as-
sumption of uncorrelated temporal increments is conve-
nient and allows for simple developments, for transport
in divergence-free velocity fields it is not valid. Further-
more, correlations between consecutive velocities, thus,
temporal increments, are expected to impact the scaling
properties of dispersion in CTRW frameworks [29–35].
The correlated CTRW model provides a new dynam-

ical picture of intermittency and an upscaled transport
model, which is fully consistent with the microscale flow
dynamics. At the root of this model is the spatial Markov
property of Lagrangian velocities, which implies that low
particle velocities have a much stronger correlation in
time than high velocities. This approach may therefore
be an alternative for understanding and quantifying in-
termittent behaviors in dynamical systems.
Acknowledgements
P. de Anna and T. Le Borgne acknowledge the finan-
cial support of the European Commission through FP7
projects ITN project, IMVUL project (Grant Agree-
ment 212298) and Marie Curie ERG grant ReactiveFlows
(Grant Agreement Number 230947). A. Tartakovsky was
supported by the ASCR Office of the US Department of
Energy. D. Bolster was supported by NSF grant EAR-
1113704. M. Dentz acknowledges the support of the FP7
EU project PANACEA (Grant Agreement No. 282900).



5

∗ E-mail: pietrodeanna@gmail.com - pdeanna@mit.edu
[1] G. Falkowich, K. Gawedzki, and M. Vergassola, Rev.

Mod. Phys. 73, 913 (2001).
[2] J. D. Seymour, J. P. Gage, S. L. Codd, and R. Gerlach,

Phys. Rev. Lett. 93, 198103 (2004).
[3] B. Berkowitz, A. Cortis, M. Dentz, and H. Scher, Rev.

of Geophys. 44, 2 (2006).
[4] A. Tartakovsky, D. Tartakovsky, and P. Meakin, Phys.

Rev. Lett. 101, 4 (2008).
[5] B. Bijeljic, P. Mostaghimi, and M. Blunt, Phys. Rev.

Lett. 107, 204502 (2011).
[6] W. Durham, E. Climent, and R. Stocker, Phys. Rev.

Lett. 106, 238102 (2011).
[7] R. Friedrich, J. Peinke, M. Sahimi, and M. R. R. Tabar,

Phys. Rep. 506, 87162 (2011).
[8] F. Toschi and E. Bodenschatz, Annual Review of Fluid

Mechanics 41, 375 (2009).
[9] G. Boffetta, F. De Lillo, and F. Musacchio, Phys. Rev.

E 85, 066322 (2012).
[10] M. Sahimi, Flow and Transport in Porous Media and

Fractured Rock (Wiley-VCH, 2011).
[11] D. L. Koch and J. F. Brady, Phys. Fluids A 31, 965

(1988).
[12] M. Sahimi, Phys. Rev. E 85, 0162316 (2012).
[13] T. Le Borgne, D. Bolster, M. Dentz, P. de Anna, and

A. Tartakovsky, Water Resour. Res. 47, W12538 (2011).
[14] E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167

(1965).
[15] J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127

(1990).
[16] J. H. Cushman, X. Hu, and T. R. Ginn, J. Stat. Phys.

75, 859 (1994).
[17] B. Berkowitz and H. Scher, Phys. Rev. E 57, 5858 (1998).
[18] M. Meerschaert, D. Benson, and B. Bäumer, Phys. Rev.
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