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A better understanding of optical loss in plasmonic and metamaterial systems is of increasing
importance for both basic and applied research in a broad range of topics including sensors, anten-
nas, optical interconnects and photovoltaics. In this paper, we use a photonic band formalism for
plasmonics to exactly derive a fundamental upper bound on the non-radiative material loss rate of
modes in plasmonic, polaritonic and metamaterial systems. This bound is purely defined by mate-
rial properties and cannot be overcome by device design. Moreover it is frequency-dependent in the
presence of multiple Lorentz poles. We numerically verify this bound through direct calculations
for a range of plasmonic systems, including optical antennas where the bound places fundamental
performance constraints.

PACS numbers: 41.20.-q,78.67.Pt,71.45.Gm,42.70.Qs

Understanding optical loss in plasmonic, polaritonic and metamaterial systems is of fundamental importance to
continued progress in the field. The coupling of photons to the electrons in the metal is at the origin of deep
subwavelength modal confinement, and also results in a powerful absorption and loss mechanism for electromagnetic
modes in such metallic systems. This optical loss and absorption can be a limiting factor for some applications [1-8].
On the other hand, enhanced optical loss in plasmonic systems has recently been leveraged to improve and maximize
absorption for a range of applications [9] including ultra-thin absorbers [10] and photodetectors [11].

In this Letter, we prove rigorously that, for any electromagnetic mode of a plasmonic structure, there exists an
upper bound on its material loss rate. When the plasmonic material is described by a multi-pole Lorentz model, the
upper bound is a frequency-dependent weighted-average of the damping rates of the oscillators that underlie the poles.
We validate this proof by full-field simulations of a variety of systems including periodic arrays of slot antennas.

There have been numerous numerical studies of the loss properties of plasmonic structures [5, 12-18]. The
calculation of the modal material loss rate has also been used to understand the effect of plasmonic loss in solar cell
light trapping schemes [19]. However, only a few recent papers have attempted to understand the general behavior
of loss in plasmonic systems from a purely analytic perspective. Wang and Shen showed that in the quasi-static
limit the intrinsic @ is fixed by the material used and resonance frequency considered, and argued that it would
be difficult to do better than their prediction [20]. Their derivation also assumes a form of energy density that is
accurate only in the low-loss limit, further limiting the applicability of their results. Khurgin and Sun have presented
a scaling analysis of loss with respect to size and wavelength, in particular related to nanoparticles and split-ring
resonators [21]. In contrast to these works, we are not restricted to the quasi-static limit, any specific geometry or
the Drude model. Our analysis is fully analytic and rigorous, derived directly from Maxwell’s equations and for
material systems described by an arbitrary number of lossy Lorentz poles.

We begin by considering materials whose permittivities can be described by
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This is the standard N-pole Lorentz-Drude function widely used to fit the permittivities of dispersive materials such
as metals [22] or polaritonic materials such as SiC. As a short-hand we refer to all such materials as metals in the
rest of the paper but emphasize that these results extend to any material system whose dielectric function can be
described by Lorentz poles. The n-th pole is characterized by its resonant frequency wo n,, its damping rate I',,, and
its oscillator strength w,, ,. For many metals in the optical wavelength range, it is essential to use multiple poles in
order to capture contributions to the permittivities from both intra-band, and inter-band transitions. The intra-band
transition gives rise to free-electron behavior that is characterized by a Drude pole with its resonant frequency wg = 0,
whereas the inter-band transition gives rise to a Lorentz pole.



We also note here the Thomas-Reiche-Kuhn sum rule [23] Zﬁ;l W;%,n = nee?/meo = wg where e and m are the
charge and effective mass of electrons respectively. The sum rule limits the total strength of the poles by n., the
number density of electrons relevant to transitions in the frequency range of interest. The effect of higher-frequency
transitions related to core electrons in the material can be captured by the £ term (see Supplementary Information).
Thus, we can express the oscillator strength of each pole as wfm = fnwf) where 21]:[:1 fn=1

For steady state, with fields varying as exp(iwt), the dispersive material characterized by Eq. (1) can be described

by the following equations [24, 25]:
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Here for the n-th pole in Eq. (1), we introduce auxiliary mechanical fields P,, and V,, that describe the position
and velocity of the corresponding electronic oscillator. Egs. (2)-(3) also define a total energy density for the given
oscillator model

Wo =

»-lkll—'

1
o|E H ——— (Wi W [Pul* + | Val?). 6
(B + ol L) +Z4fnwgam<wo,n| P+ Val) (©)

TheZn 14jw5

used to determlne the kinetic inductance term in RLC-circuit models of metamaterials [26].

Solving the eigenvalue problem defined by Eqgs. (2)-(5) results in eigenfrequencies w = w, + 7y that are complex in
general, with w, corresponding to the modal frequency and - the mode’s material loss rate. Below we will use Egs.
(2)-(5) to constrain the behavior of the modal material loss rate .

From Egs. (2)-(5) we obtain

|Va|? term corresponds to the kinetic energy of the electrons. We note that this kinetic energy is
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We integrate both sides of Eq. (7) over space. We use the standard vector field identity on the last term of Eq. (7)
and find a [ drV - (E x H*) term. For closed or periodic systems this term is zero, and in practice it is &~ 0 for many
open systems of interest where the field is strongly confined to a metal-dielectric interface. We then separate the real
and imaginary components of Eq. (7) respectively to find the first result of the paper
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We emphasize that both Eq. (8) and Eq. (9) are ezact for closed and periodic systems, and in practice accurately
describe many open plasmonic systems of interest. Eq. (8) states that, for a given mode, the sum of the magnetic
energy and kinetic energy of the electrons is equal to the sum of the electric energy and potential energy of the
electrons. Eq. (9) relates the modal material loss rate to the fraction of its total energy that is in the kinetic energy
of the electrons. A formula regarding loss reminiscent of Eq. (9) was previously derived in Ref. [24] using first-order
perturbation theory, starting from the mode of a fictitious lossless system. In contrast, the result here, with the fields



being the actual modal fields of the lossy system, is much stronger: it has no approximation and does not rely upon
perturbation theory.

Comparing Egs. (6) and (8) straightforwardly leads to an exact bound on the kinetic energy of the electrons that
is quantified by the V field:
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Combining Eq. (10) and Eq. (9) (see Supplementary Information) we obtain our second main result, an expression
for Ymaq, the upper bound on the material loss rate of every mode of the system
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0., (w,) are frequency-dependent weighting factors such that 27]:’:1 0, (w,) = 1. This expression is an approximation
derived in the limit that v < w, which corresponds to most plasmonic situations of interest. More generally, the
upper bound can also be expressed as an exact, self-consistent equation for 7,4, (see Supplementary Information).
The upper bound y,q.(w;) is thus a frequency-dependent weighted-average of one-half the damping rates of the poles,
T',,/2. The weighting takes into account both the strength of the damping and the strength of the pole itself. Thus a
weak pole (small f,,) has limited effect on the upper bound even if it has an extremely large corresponding damping
rate I'),. The behavior of the upper bound is thus complex and depends on the distributions of pole parameters for a
material. As such, the maximum upper bound over all frequencies will not necessarily be max(I',,)/2 and, as we show
in the numerical results, it can be substantially lower than this value.

To further examine the implications of Egs. (11)-(12) we consider a few special cases that are of practical interest:

(1) Single-pole case: The upper bound is exactly Yma. = I'1/2 for all frequencies.

(2) Multi-pole case: Suppose there exists a k-th pole with its frequency far away from other poles such that
O (wr) > 0, (w),n # k. Near this k-th pole then we have V40 ~ %l—‘k. This is particularly relevant when one has a
Drude term as characterised by a resonant frequency wy = 0 and a damping rate I'p,yqe- In such cases, the Drude
damping rate dominates for low frequencies away from the lowest frequency Lorentz pole and Yimaz =~ I' Drude/2-

(3) High-frequency limit: The upper bound in this case is a constant sum of the damping rates of the oscillators
weighted by the strength of each oscillator:

Ymaz Wy = 00) Z Fuln- (13)

The upper bound on ~y corresponds to a lower bound on the intrinsic quality factor Q; > wy/2Vmaz(wr). We note
finally that both these bounds are purely dependent on material properties and cannot be overcome by varying a
plasmonic nanostructure’s shape or design. Moreover, as we show in the numerical examples below, plasmonic modes
with EM fields confined to deep subwavelength regions are often very close to this limit.

We now numerically verify this result. For direct verification we calculate v for the eigenmodes of a variety of
plasmonic nanostructures either analytically or numerically using the method of Ref. [24]. First, for simplicity, we
use a N = 1 Drude fit of silver where o, = €9, wo = 0, wp, = 27¢/a, and I' = 0.0025w,, for a = 136 nm. We begin
with a simple metal-air interface and calculate v analytically (see Supplementary Information) for the fundamental
surface plasmon mode. As shown in Fig. 1 7 indeed saturates at Vinae = I'/2 as k, — 0o. For a metal-air interface
this corresponds to w, — wp/ V2 = wsp, the surface plasmon frequency.

Next we consider a more complex plasmonic nanostructure consisting of a 2D periodic array of silver slot antennas
in air. For the plasmonic material we use a N = 3 fit of silver (see Supplementary Information Table I). We plot the
corresponding Ymqq(wy) in Fig. 2(a). In consistency with case (2) of the theory presented earlier, we observe that
in the frequency region near a pole Y4, (w;) is dominated by the damping rate of such a pole. In frequency regions
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FIG. 1: (a) Modal material loss rate (v in units of I') vs. wave vector (k; in units of kp) for a planar metal-air interface
calculated analytically. The metal is described by e(w) = 1 — w2 /w(w —4T), and k, = wp/c. v approaches Vmqs = ['/2 for large
k<, where the field is strongly confined spatially to the interface.

between poles, Ymaz(wr) is a weighted average of the damping rates of the poles. Furthermore, in this example the
maximum of the upper bound is in fact lower than the largest damping rate, I's /2, due to the complex interaction of
the strengths and damping terms of these three Lorentz poles.

Having discussed the upper bound of the modal material loss rate, which is determined by the plasmonic material
model only, we now consider the material loss rate of the optical modes of the antenna array. We calculate v of TE (E,
and E, in-plane) modes for all wave vectors k in the irreducible first Brillouin zone. These y are plotted against their
corresponding real frequency w, in Fig. 2(a) as squares. As in Fig. 1 the numerically calculated ~ for the antenna
array’s optical modes do not exceed the predicted upper bound of Yyq. (wy), but many modes do approach this bound.
We compare two modes with large and small v in Fig. 2(b) and Fig. 2(c) respectively. The eigenmode with strong
field confinement [Fig. 2(b)] at the metal-air interface has a large v, approaching the limit of ~,,4,. Similar behavior
is also seen in the case of plasmonic cavities (see numerical example in the Supplementary Information). Through
these numerical examples, we have demonstrated that the upper bound as derived theoretically can indeed be used
to constrain modal loss behavior in plasmonic structures in a general multi-pole, multiple mode situation.

We now demonstrate how our rigorous understanding of the modal material loss rate of plasmonic modes sheds
light on general behaviors of optical antennas [7, 8]. In 2D, a deep sub-wavelength lossless optical antenna (I" = 0)
that supports a single resonance has a scattering cross section Cjossiess [27]
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Here  is the resonance frequency, 7 is the external linewidth due to the antenna’s radiation. In the lossless system,

the external linewidth exclusively defines the total linewidth and the total quality factor Q). A lossy version of the
same antenna has a scattering cross section Cjossy defined as
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For the lossy antenna, the total linewidth is the sum of the external linewidth n due to radiation, and the modal
material loss rate -y, which is sometimes also referred to as the intrinsic linewidth. Our theory constrains this v and
hence constrains the antenna behavior.

As a concrete example, we consider five rectangular plasmonic antenna structures (Inset, Fig. 3(a)). These antenna
structures are made of gold, defined by a N =1 fit of Eq. (1) where wg = 0, w, = 4.12 x 10" s71, e, = 11g9 and
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FIG. 2: (a) Modal material loss rate (y in units of 2wc/a, where a = 136 nm is the period) vs. real frequency (w, in units
of 2mc/a) for all TE modes of a 2D periodic array of plasmonic slot antennas (shown in the inset) in the first Brillouin zone.
The plasmonic material is described by a three-pole fit of silver’s dielectric function described in Table I in the Supplementary
Information. The ~ values, numerically calculated via the method of Ref. [24], are shown as individual points. Many modes
follow the upper bound vma.: (marked by the blue line) but do not exceed it. (b),(c) Electric field intensity (|E.|?) of two
eigenmodes with large and small 4. The modes with larger v that approach 7maz exhibit field profiles that are strongly
concentrated along the metal-air interfaces of the antenna.

I' = 4.12 x 10'3 s7!. All antenna structures have a constant aspect ratio, with the largest being 80 nm x 16 nm, and
the smallest 10 nm x 2 nm.

We simulate these antenna structures using the finite-difference frequency domain (FDFD) method [28]. The finite-
difference grid used in the simulation has a spatial resolution that varies from 1.33 nm for the largest antenna to
0.167 nm for the smallest antenna. These resolutions were chosen since higher grid resolution resulted in no changes
in the field patterns and resonances observed. We calculate the scattering cross-sections of these antennas using the
total-field /scattered-field method [29]. For each antenna structure we calculate its scattering cross-section, both for
the lossy case with full material loss, and for the lossless case with I' set to zero. The scattering cross-section spectra
thus obtained for the five antenna structures are shown in Fig. 3(a). The modal field distribution at one of the
resonant peaks is shown in Fig. 3(b) indicating that this is a half-wavelength antenna structure. We see that in
reducing the antennas dimension its resonant frequencies shift to higher frequencies.

From the scattering cross-section spectra we extract the material loss and external radiation rates of these antenna
structures. We fit Eq. (14) to the spectrum of the lossless case to determine the external radiation rate n. With
71 determined we then fit Eq. (15) to the lossy case to determine the modal material loss rate 7, as well as as the
intrinsic quality factor @Q; = w, /27, where w, is the resonant frequency.

We now plot the modal material loss rate for these five antenna structures, and the intrinsic quality factor of the
resonance, as a function of resonant frequency (Fig. 4). We observe that the modal material loss rates v all fall
below Ymar = I'/2 in Fig. 4(a), while the intrinsic quality factor @; are above w,/T" in Fig. 4(b), as expected from
our theory. As the antennas become smaller, increasing their resonant frequencies, their v increase while their Q;
decrease in value. This behavior persists until the + values approach the upper bound of vy,4.. After this point
smaller antennas operating with higher resonant frequencies w, can have higher @Q); since their v values have saturated
near Ymaz. Lhis effect, of a higher @); at higher resonant frequencies, is related to the assumption that the damping
rates of the oscillators I',, is independent of the geometry. In practice, as the antenna becomes smaller, I';, will
increase due to the finite-size effect, in which case the corresponding upper bound on the loss rate will depend on the
antenna’s size [30]. However, the general trend, that as the size of the antenna decreases, the actual modal material
loss rate approaches its upper bound, remains valid. The trend that we observe here is consistent with previous works
on metallic nanoparticles [27]. Finally, we note that this result is of practical relevance for the design of dark-state
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FIG. 3: (a) Normalized scattering cross sections for 2D lossless and lossy gold dipole antennas of varying dimensions (aspect
ratio maintained). Smaller antennas have higher resonance frequencies and the lossy antennas have smaller scattering cross
sections compared with its lossless counterpart. (b) Electric field intensity for the 60 x 12 nm antenna at resonance as solved
by the Finite-Difference Frequency Domain (FDFD) method.
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FIG. 4: (a) Modal material loss rates « for the five plasmonic half-wavelength antennas shown in Fig. 3 as a function of their
resonance frequency w,. These loss rates approach the Ymaz = I'/2 limit (blue line) as w, gets larger but do not exceed the
upper bound. (b) Intrinsic Q-factor @Q; for the same antennas. The @Q; stay above the lower bound (blue line) of w,/T" and
decrease with increasing w, until they approach the lower bound. Once they approach this bound they start following the
bound line, and antennas at higher w, can have higher Q;.

plasmonic antennas [5, 31-34] where the resonant linewidth of the dark state is predominantly defined by its modal
material loss rate.

In conclusion, we have analytically derived an exact energy relation between the electromagnetic fields and the
mechanical motion of electrons in dispersive plasmonic and metamaterial systems. We have used this relation to
place an upper bound on the material loss rate of optical modes in such dispersive systems, and verified this result
numerically. These results were derived exactly without electrostatic approximations and apply generally to electro-
magnetic modes in any dispersive material system, including polaritonic materials. We believe these results offer a
general framework to understand the modal material loss rates and linewidths of resonances in all plasmonic and



metamaterial systems and show that no amount of design can overcome material properties when it comes to the
upper bound of the linewidth and corresponding lower bound on @Q;.
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