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We propose a simple criterion to identify when Nambu—Galdstbosons (NGBs) for different symmetries
are redundant. It solves an old mystery why crystals haveqh® for spontaneously broken translations but
no gapless excitations for equally spontaneously brokéstioms. Similarly for a superfluid, the NGB for
spontaneously broken Galilean symmetry is redundant vaicimpns. The most nontrivial example is Tkachenko
mode for a vortex lattice in a superfluid, where phonons atendant to the Tkachenko mode which is identified
as the Boboliubov mode.

PACS numbers: 11.30.Qc, 14.80.Va, 03.75.Kk

Introduction. — In many areas of physics, it is important mechanism because our criterigguires redundancies.
to study consequences of microscopic physics on macrascopi This result was inspired by the work by Low and
behaviors, sometimes calletinergent phenomena. One of Manohar [6], which pointed out that lacal transformation
the best examples in this category is the existence of gaplesf different symmetries may lead to the same field config-
excitations, called Nambu—Goldstone bosons (NGBs), whenrations. But they did not clearly distinguish the claskica
global continuous symmetries are spontaneously broken [1] field configurations and quantum states and operators, and re
For spontaneously broken internal symmetries in Lorentzstricted themselves to Lorentz-invariant systems. We teed
invariant systems, the symmetries dictate the numbeg ),  generalize their intuition and formulate it more concregtel

dispersion relation, and interactions of NGBs complef€he Noether congraints. — A symmetry is spontaneously
present authors have generalized this well-known resalts tbroken if its generato), (¢ = 1,...,ngg) has an or-
systems without Lorentz invariance, and proved a general fo der paramete(0|[Q,, ®(y)]|0) # 0. By inserting a com-
mula [2] plete set of states, one finds the existence of a gapless state
. (7 (7a) 30(2)]0) # 0 wherelimg, o Er, (52) = 0.
nxep = dim(G/H) — =rankp, 1) We first point out that the above general theorem immedi-
2 ately tells us the NGBs are redundant if a linear combination
pab = —ilim lim i<0|[Qa, Qy]]0). (2)  of Noether currents annihilate the ground state for now-zer
BlLOVteo V coefficientse,,

Here, |0) is a ground state of the finite volume system in the 4

presence of external fieldB,, that favor order parameters. /d xZCa 7)ja()[0) = 0. ®)

Note that the symmetry breaking pattern itself is not suffi-

cient to fix the number of NGBs and the additional informa-\we call themNoether constraints. In general, the coefficients
tion on the ground state, is required|[3]. Here and hereafter, ,(z) are spacetime dependent. Since for each spontaneously
whenever we refer to broken generatQrs we mean suitable  proken symmetry there must be a gapless NGB $tate let
large-volume limitdimy oo [i, d% j (2), wherej®(z) isthe  us multiply S, |7,) (74| on the above equation. Then we find

Noether charge density. that the would-be NGB states satisfy

In the case of spacetime symmetries, however, the counting
of NGBs is more subtle. Even for Lorentz-invariant systems, /ddxz Ca(@)|7a) (a1 (2)]0) = 0. (4)
some examples elude the above rule for internal symmetries, “

e.g., spontaneously broken conformal and scale invariance [4].

There is an empirical prescription callawverse Higgs mech-  Since(m, |50 ()|0) # 0 by definition, we findr,) states are
anismthat allows one to identify possible constraints tteat  linearly dependent. Therefore, the would-be NGB states hav
be imposed among NGBs! [5], while it does not dictate ifredundancies by the number of Noether constraints[Eq. (3).
they should be imposed. Little is known for theories without ~ The rest of the discussion is how such Noether constraints
Lorentz invariance. arise in two general categories.

In this Letter, we propose a simple criterion to determine Internal Symmetries. — Let us first look at a simple ex-
what redundancies exist among NGBs in a given system. Reéample: Heisenberg ferromagnet. Our argument on internal
dundancies can arise for two separate reasons: (1) specBmmetry assumes the translational invariance of the groun
property of the ground state annihilated by a linear combinastate. Knowing that the order parameter is the uniform mag-
tion of symmetry generators, and (2) identities among Nereth netization, we consider the Hamiltoniah= J }_ (i) 88—
charge densities. It is complementary to the inverse HigggB. . s.; and its ground state in which all spins are alined



in the positivez-direction. For anyB, > 0, the raising oper- Spacetime Symmetries. — Another reason for redundan-
ator Sy = > .(sz; + isy;) must annihilate the ground state, cies is when the Noether charge densities are linearly depen
since otherwise5|0) has a lower energy«uB.) than the dent. Namely>" c.(z)jJ(z) = 0 as an operator identity,

ground state. By taking the thermodynamic limit and succesand the redundancy is obviously independent of the property
sively turning off the magnetic field@, | 0, we obtain the of the ground state.

Noether constraint, To illustrate the point, let us consider a simple crystale Th
Lagrangian or Hamiltonian is both translationally and fota
Z(sm- +154;)]0) = 0. (5) tionally invariant, with six generators in three spatiaheén-
i sions. A crystal spontaneously breaks all six symmetries.

However, it is well-known that there are three gapless phono

The states created by two broken chargesandS, are hence  excitations (two transverse and one longitudinal), but woean
not independent. Indeed, it is known that there is only onapne are not aware of satisfactory explanation for the lack of
magnon (quantized spin wave) state, consistent with[Eq. (2) NGBs for rotational symmetries in the literature.

In general, it is common to introduce an external field for The crucial observation is that the Noether charge dessitie
each order parameter so that the selected ground state hagoatranslation® and rotationR% are related by
proper thermodynamic limit. Therefore for antiferromatgne _ _
we should consider the limit of vanishing staggered magneti R = €ijiIJTOk- (7)

field to get such a ground state. As a result, 4. (5) is no;l_h ; h d h b NGBs f |
satisfied and we can ség andS, excite independent NGBs. eretore, w at cou ave been s for spontaneous y
broken rotational symmetries are redundant with those for

A similar phenomenon has been discussed in a relativistig ontaneously broken translational svmmetries. hence onl
field theory with a chemical potentiell[7]. The model con- P y y ’ ¥

sists of a two-component scaler fieldz) with U(2) global three NGBs. Note that* are parameters and notoperators

; . ) in quantum field theories. The NGB in helimagnets [9] with
symmetry generated by the Pauli matricesand the iden- o . . .
. ; i . . the Dzyaloshinskii—-Moriya interaction can be understaod i
tity matrix 9. The field acquires the vacuum expectation

value, say{0|(z)|0) = (v,0)T, breaking generator@;, Q- similar manner.

. . A more nontrivial example is a superfluid. The matter
and@s + Qo spontaneously. Due to the chemical potential,,. . .
0 0 . field changes its phase under the particle-number symmetry
(j5 + 7g)(x) also develops a non-zero expectation value. By, ~ 0 ) [~ . .
. . . ) . U(1) asy(Z,t) — e(Z,t), while changes both its argu-
applying an external field to this density, we can derive thement and the phase under the Galilean boost by veldtit
Noether constrain{ d?z(j9 + ij9)(x)|0) = 0, resulting in P y velaslty

= i(mT-F—2mi%t), (= _ = _
one less NGBs than the number of broken generators [7]. wr(évé:) ;afnetem = t)|lé(x_ vt,ﬁzar(]\évg ts)fetZk; ;%'eTTﬁ:\se
In order to generalize our argument to an arbitrary internaP P V(@ 1)10) = vo P

. ; . . symmetry and three boost symmetries. However, there is onl
symmetry group, let us consider a simple Lie graupSince y y Y Y

all Lie aroups can be decomposed into simple arouns an ne gapless excitation, namely the Bogoliubov mode. Recall
group X P Pi€ groups . ﬁ—xat consideration of the spontaneously broken Galilean in
U(1) factors, extension to the most general case is straigh

. . variance is crucial to the Landau’s criterion for superfityid

forward.) We choose basis of generators in such a way that he lack of ind d f i

only j9(x) may have a non-vanishing expectation value [8] T. € fack ol indepen ent NGE.’S or Galilean symmetry
1 "again can be seen in the operator identity that the Noether cu

LetQa (o = 1,---,rank () be Cartan generators Gfand 1 ¢ the Galilean boosBi* is related to the U(1) current
Q1+, = Qsr £ iQ,1 be raising and lowering operators such as

that [QlaQi,U] = :I:QUQ:E.,U andQU >0 (U = 1,...,m).

If (05{(z)|0) is non-zero, it serves as an order_ parameter of B = T — majh. 8)
spontaneously broken generat@)sz ;. Hence it is legiti-
mate to introduce an external fielsh asH = H — B1Qx, Here and hereafter, the Greek indexrefers to the space-

in addition to other external fields, if necessary. Assumindime index,0 = ¢, 1 = z, 2 = y, 3 = z. Itis straight-

the commutativity in taking vanishing limits for each extat ~ forward to derive this identity from the Lagrangian density

field, we obtain Noether constraints L =iyl — ;=Vyivy — V(). Since the translational
invariance is not broken in the superflui¥® does not create

d 0 . .0 a gapless excitation, while those created®Y and;° are
/d 2Uor +ijar)(@)|0) =0 (6) Iingza?ly dependent, hence redundant. "

\ortex lattice. — Perhaps the most nontrivial example
foro = 1,...,m. As a consequencexcg reduces by the s the redundancy among NGBs in a vortex lattice. Rotat-
number of constraints:. ing superfluids and atomic BEC form a triangular lattice of

If we rearrange the broken generators &k = guantized vortices [10], spontaneously breaking the taans
(Qir, Q115+ ,QmR, Qmr, ), the matrix p defined in tional symmetry. It is known that the system supports a soft

Eqg. (2) takes the block diagonal form where each 2 by 2 blocksollective oscillation with a quadratic dispersion, sdiazh
readslim o limy 1o (0[5 (0)|0)i% 7,. Therefore, the rank Tkachenko mode[11-14]. Since the Tkachenko mode is often
of p is precisely2m, as predicted by the counting rule Hgl. (1). associated with an elliptically-polarized lattice viboat, one



3

may naively expect the existence of the usual (Bogoliubov)n the vortex lattice system, botR! = [d4zT% andN =
phonon, which corresponds to the fluctuation of the supeirflui [ d%z j° are spontaneously broken. However, according to
phase. Until today, all prior works on the collective modesour general criterion, the operator identity Hg.l(12) swgge
in the system have been based on the hydrodynamic theorthat 7% and;° do not produce independent NGBs. We will
Although they seem to imply the absence of such a gaplessxplicitly verify this claim in the following.

mode, the reason for the missing has been left unclear.

In the presence of vortices, the pha#sg contains singu-

To clarify the low-energy structure of the system, here wearities. We decompose. into the regular part,., and

construct an effective Lagrangian. In order to discussoitrir

the vortex parfing; i.€., biot = Oreg + Osing. SiNCEOging

the symmetry-breaking point of view, we do not take intois only defined up to a smooth function, this decomposition

account the inhomogeneity due to trapping potential or thés not unique and we will fix the ambiguity later.

Due to

centrifugal potential. In other words, we focus on the regio the singularity,fsin, does no longer satisfy?6s,e = 0. In

where the trapping potential almost cancels the centrifuga
tential but still retains a finite particle density. Our ®mstthus

fact, *d(dfsing) (* is the Hodge dual of + 2D Minkowski
space) can be identified as the vortex curfigitex (jhortox =

can be rephrased as bosons which couple to an effective uni¥**9,0,0sine) that automatically satisfies the topological
form magnetic fieldB.s = 2mQ/ e as if they have a charge conservation lawd * jyortex = Opfhortex = 0-

ec.fr. The effective Lagrangian for vortices in superfluids has Now let us introduce a continuum description of the vor-
been discussed in several papers [15], but they did notsiscutex dynamics. Because the crystalline order breaks the mag-
the vortex lattice configuration. They also introduced saglve netic translation, we introduce field§* that specify the

fields in addition to NG degrees of freedom, which is not suit-position of the vortices.

able for our purpose.
Let us start with the standard Lagrangian [16],

NS SR IS ST
L= L~ 41) ~ 5|Vl

~Virap ()1 — 29 (10 ©

We restrict ourselves to 1+2D and the zero temperature. To g

to the corotating frame with the angular frequeity= Q3%,
one makes the substitutiagh — 0; — Oxi-V. Assuming
a Bose-Einstein condensate, we plug- /ne =t into the
Lagrangian and obtain

; . 1 -
£ = 51 = 1) = 3 |(V — im@ x Dy’

V@0t — So(wt)?

- (V”)2 - 1,
== gy~ Ver(@)n = 5gn
1
~ == Vg (@), 10
3ol = Ve (#) (10)
- Lom
whereVeg (%) = Vipap (T) — EQ%? and

. 1 o
= Htot — —(V@tot + mf) x .’Z")Q
2m

In the third line [Z0), we integrated out, keeping only the
leading term in the derivative expansion|[17].

If we neglect the effective potenti®il (%), as we do so for
the rest of the paper, the Lagrangian possesseswiyaetic
translational symmetry,

W&+ @,t) = §(&, e T, (11)

Because of the lack of Galilean invariance, the energy mo

mentum tensor no longer satisfi€8’ = mj*. Instead,

T = mj* — 2mQe 2’ 5°. (12)

Here, we follow the notation in
Ref. [18]: X* is the Lagrangian coordinate frozen on the
lattice, whilez® is the Eulerian coordinate. We fix the re-
lation betweenX® and x* in such a way thati(7,t) =
z— )f(f, t) represents the displacement from the equilibrium
positionZ. The vortex current in the continuum description
can be expressed gStex = *3Mo€apd X ANdXY (G4 1or =
Lmoet eqp0, X 20, X ") [16] whereZe = —2 [16] is the
umber density of the vortices in the equilibrium.

By equating these two expressions for the topological cur-

rent, we havel(dfsing) = —mQeqpdX®* A dX?, which gives

dOsing = —mQeap X “dX° + dy. (13)

A smooth functiony corresponds to the ambiguity mentioned
above. We choosg = me¢;, 2’ X* so that the explicit coor-
dinate dependence drops from the Lagrangian. Assuming the
triangular lattice and adding the corresponding elastargn
Ee(01) = (2C1 + C2)(V - 10)? + Co(V x i@)? (in the notation

of Ref. [13]), we arrive at our effective Lagrangian,

1 _,
Eeﬂ" = 5,“2 - Eel(au)a (14)

,u:éreg—mﬁ-ﬁxﬁ'
—Lm(VOrcg +2mQ x @ — erklukVul)Q.(15)

The ground state aff — o N (IV is the total number of parti-

cles) is characterized dls,, = pot andu = 0. L.g describes

the dynamics of fluctuatiop = ot — brep @aNdu = & — X.

Similar expressions can be found in Ref.|[19] that discusses

the vortex lattice in superconductors in a different cotytieut

its derivation is empirical in contrast to ours based on sgnm

try and derivative expansion.

As a nontrivial test, let us derive hydrodynamic equations
as the Euler-Lagrange equations of the effective Lagrangia
Variation w.r.t 6., gives the continuity equatiod, j* =
9+ V - (nv) = 0, wheren = L and
(Vbreg +2mQ x i@ — mQeyuFVal).  (16)

U= —

1
m
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Since we implicitly assumed that vortices are massless andur effective Lagrangian Ed. (IL4) in a nontrivial manner,
hence does not have the kinetic term @, the Equa- T(F+a,t) =ad@t)+a (20)
tion of Motion (EOM) of the displacement vector requires o N oL ~
the balance between the Magnus force and the elastic force 0'(F +d,t) = 0(Z,t) —mda - Q x [u(Z,t) - 27]. (21)
ﬁlﬂagnus + Fy, = 0, whereF, = 5£f1 and ﬁMagnus _  This symmetry also prote_cts the quadratic dispersionioslat
~ ou of the Tkachenko mode; i.e., the lower order texm(V)?

2mnQ x [V — (9 + ¥ - V)u]. All of these equations agree cannot be generated by renormalization process inEH. (19).
with those discussed in Refs. [12) 13] based on the linedrize |t s instructive to compare the vortex lattice with a super-
hydrodynamic theory, which in turn verifies our effective-La solid |.18] A Superso”d exhibits a similar Symmetry-br'gaj(
grangian. Note that our expressions are fully non-linear apattern; namely, it breaks both (usual) translation and)U(1
required by the symmetrg,g., the third term in Eq[(16), be- phase rotation. In contrast to the vortex lattice case, efch
yond the linearized expressions in their papers. d momentum operatorB’ and the number operatd¥ inde-

Let us analyze the low-energy collective mode in our ef-pendently produces a NGB, giving risede- 1 NGBs in total
fective Lagrangian. If we keep only quadratic terms in thein d-space dimensions. This is consistent with our criterion,

fluctuationy and, the Lagranigan becomes since in the case of supersolid, the Galilean invariancg [18
no e o - (more precisely, the non-relativistic general-coorcéria\‘/ar_i-.
Leg =~ omc2 [%0 — ¢ (Oip + 2mQeiju’) ] ance [22]) leads t&"” = mj’. Therefore phonons origi-
5 ) nated from the translational symmetry breaking and Bogoli-
—nom - U X U — Ee (01). (17)  ubov mode are not redundant.
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