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We propose a simple criterion to identify when Nambu–Goldstone bosons (NGBs) for different symmetries
are redundant. It solves an old mystery why crystals have phonons for spontaneously broken translations but
no gapless excitations for equally spontaneously broken rotations. Similarly for a superfluid, the NGB for
spontaneously broken Galilean symmetry is redundant with phonons. The most nontrivial example is Tkachenko
mode for a vortex lattice in a superfluid, where phonons are redundant to the Tkachenko mode which is identified
as the Boboliubov mode.
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Introduction. — In many areas of physics, it is important
to study consequences of microscopic physics on macroscopic
behaviors, sometimes calledemergent phenomena. One of
the best examples in this category is the existence of gapless
excitations, called Nambu–Goldstone bosons (NGBs), when
global continuous symmetries are spontaneously broken [1].

For spontaneously broken internal symmetries in Lorentz-
invariant systems, the symmetries dictate the number (nNGB),
dispersion relation, and interactions of NGBs completely.The
present authors have generalized this well-known results to
systems without Lorentz invariance, and proved a general for-
mula [2]

nNGB = dim(G/H)− 1

2
rankρ, (1)

ρab = −i lim
B↓0

lim
V ↑∞

1

V
〈0|[Qa, Qb]|0〉. (2)

Here,|0〉 is a ground state of the finite volume system in the
presence of external fieldsBα that favor order parameters.
Note that the symmetry breaking pattern itself is not suffi-
cient to fix the number of NGBs and the additional informa-
tion on the ground state,ρ, is required [3]. Here and hereafter,
whenever we refer to broken generatorsQa, we mean suitable
large-volume limitslimV ↑∞

∫

V
ddx j0a(x), wherej0(x) is the

Noether charge density.
In the case of spacetime symmetries, however, the counting

of NGBs is more subtle. Even for Lorentz-invariant systems,
some examples elude the above rule for internal symmetries,
e.g., spontaneously broken conformal and scale invariance [4].
There is an empirical prescription calledinverse Higgs mech-
anism that allows one to identify possible constraints thatcan
be imposed among NGBs [5], while it does not dictate if
theyshould be imposed. Little is known for theories without
Lorentz invariance.

In this Letter, we propose a simple criterion to determine
what redundancies exist among NGBs in a given system. Re-
dundancies can arise for two separate reasons: (1) special
property of the ground state annihilated by a linear combina-
tion of symmetry generators, and (2) identities among Noether
charge densities. It is complementary to the inverse Higgs

mechanism because our criterionrequires redundancies.
This result was inspired by the work by Low and

Manohar [6], which pointed out that alocal transformation
of different symmetries may lead to the same field config-
urations. But they did not clearly distinguish the classical
field configurations and quantum states and operators, and re-
stricted themselves to Lorentz-invariant systems. We needto
generalize their intuition and formulate it more concretely.

Noether constraints. — A symmetry is spontaneously
broken if its generatorQa (a = 1, . . . , nBG) has an or-
der parameter〈0|[Qa,Φ(y)]|0〉 6= 0. By inserting a com-
plete set of states, one finds the existence of a gapless state
〈πa(~pa)|j0a(x)|0〉 6= 0 wherelim~pa→0Eπa

(~pa) = 0.
We first point out that the above general theorem immedi-

ately tells us the NGBs are redundant if a linear combination
of Noether currents annihilate the ground state for non-zero
coefficientsca,

∫

ddx
∑

a

ca(x)j
0
a(x)|0〉 = 0. (3)

We call themNoether constraints. In general, the coefficients
ca(x) are spacetime dependent. Since for each spontaneously
broken symmetry there must be a gapless NGB state|πa〉, let
us multiply

∑

a |πa〉〈πa| on the above equation. Then we find
that the would-be NGB states satisfy

∫

ddx
∑

a

ca(x)|πa〉〈πa|j0a(x)|0〉 = 0. (4)

Since〈πa|j0a(x)|0〉 6= 0 by definition, we find|πa〉 states are
linearly dependent. Therefore, the would-be NGB states have
redundancies by the number of Noether constraints Eq. (3).

The rest of the discussion is how such Noether constraints
arise in two general categories.

Internal Symmetries. — Let us first look at a simple ex-
ample: Heisenberg ferromagnet. Our argument on internal
symmetry assumes the translational invariance of the ground
state. Knowing that the order parameter is the uniform mag-
netization, we consider the HamiltoniañH = J

∑

〈ij〉 ~si ·~sj−
µBz

∑

i szi and its ground state in which all spins are alined
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in the positivez-direction. For anyBz > 0, the raising oper-
atorS+ =

∑

i(sxi + isyi) must annihilate the ground state,
since otherwiseS+|0〉 has a lower energy (−µBz) than the
ground state. By taking the thermodynamic limit and succes-
sively turning off the magnetic fieldBz ↓ 0, we obtain the
Noether constraint,

∑

i

(sxi + isyi)|0〉 = 0. (5)

The states created by two broken charges,Sx andSy are hence
not independent. Indeed, it is known that there is only one
magnon (quantized spin wave) state, consistent with Eq. (2).

In general, it is common to introduce an external field for
each order parameter so that the selected ground state has a
proper thermodynamic limit. Therefore for antiferromagnets,
we should consider the limit of vanishing staggered magnetic
field to get such a ground state. As a result, Eq. (5) is not
satisfied and we can seeSx andSy excite independent NGBs.

A similar phenomenon has been discussed in a relativistic
field theory with a chemical potential [7]. The model con-
sists of a two-component scaler fieldψ(x) with U(2) global
symmetry generated by the Pauli matricesτi and the iden-
tity matrix τ0. The field acquires the vacuum expectation
value, say,〈0|ψ(x)|0〉 = (v, 0)T , breaking generatorsQ1,Q2

andQ3 + Q0 spontaneously. Due to the chemical potential,
(j03 + j00)(x) also develops a non-zero expectation value. By
applying an external field to this density, we can derive the
Noether constraint

∫

ddx(j01 + ij02)(x)|0〉 = 0, resulting in
one less NGBs than the number of broken generators [7].

In order to generalize our argument to an arbitrary internal
symmetry group, let us consider a simple Lie groupG. (Since
all Lie groups can be decomposed into simple groups and
U(1) factors, extension to the most general case is straight-
forward.) We choose basis of generators in such a way that
only j01 (x) may have a non-vanishing expectation value [8].
LetQα (α = 1, · · · , rankG) be Cartan generators ofG and
Q±,σ = QσR ± iQσI be raising and lowering operators such
that [Q1, Q±,σ] = ±qσQ±,σ andqσ > 0 (σ = 1, . . . ,m).
If 〈0|j01(x)|0〉 is non-zero, it serves as an order parameter of
spontaneously broken generatorsQσR,I . Hence it is legiti-
mate to introduce an external fieldB1 asH̃ = H − B1Q1,
in addition to other external fields, if necessary. Assuming
the commutativity in taking vanishing limits for each external
field, we obtain Noether constraints

∫

ddx(j0σR + ij0σI)(x)|0〉 = 0 (6)

for σ = 1, . . . ,m. As a consequence,nNGB reduces by the
number of constraintsm.

If we rearrange the broken generators asQa =
(Q1R, Q1I , · · · , QmR, QmI , · · · ), the matrix ρ defined in
Eq. (2) takes the block diagonal form where each 2 by 2 blocks
readslimB↓0 limV ↑∞〈0|j01(0)|0〉i qσ2 τy. Therefore, the rank
of ρ is precisely2m, as predicted by the counting rule Eq. (1).

Spacetime Symmetries. — Another reason for redundan-
cies is when the Noether charge densities are linearly depen-
dent. Namely

∑

a ca(x)j
0
a(x) = 0 as an operator identity,

and the redundancy is obviously independent of the property
of the ground state.

To illustrate the point, let us consider a simple crystal. The
Lagrangian or Hamiltonian is both translationally and rota-
tionally invariant, with six generators in three spatial dimen-
sions. A crystal spontaneously breaks all six symmetries.
However, it is well-known that there are three gapless phonon
excitations (two transverse and one longitudinal), but no more.
We are not aware of satisfactory explanation for the lack of
NGBs for rotational symmetries in the literature.

The crucial observation is that the Noether charge densities
for translationT 0i and rotationR0i are related by

R0i = ǫijix
jT 0k. (7)

Therefore, what could have been NGBs for spontaneously
broken rotational symmetries are redundant with those for
spontaneously broken translational symmetries, hence only
three NGBs. Note thatxi areparameters and notoperators
in quantum field theories. The NGB in helimagnets [9] with
the Dzyaloshinskii–Moriya interaction can be understood in a
similar manner.

A more nontrivial example is a superfluid. The matter
field changes its phase under the particle-number symmetry
U(1) asψ(~x, t) → eiθψ(~x, t), while changes both its argu-
ment and the phase under the Galilean boost by velocity~v,
ψ(~x, t) → ei(m~v·~x− 1

2
m~v2t)ψ(~x − ~vt, t) (we set~ = 1). The

order parameter〈0|ψ(~x, t)|0〉 = ψ0 hence breaks one phase
symmetry and three boost symmetries. However, there is only
one gapless excitation, namely the Bogoliubov mode. Recall
that consideration of the spontaneously broken Galilean in-
variance is crucial to the Landau’s criterion for superfluidity.

The lack of independent NGBs for Galilean symmetry
again can be seen in the operator identity that the Noether cur-
rent for the Galilean boostBiµ is related to the U(1) current
as

Biµ = tT iµ −mxijµ. (8)

Here and hereafter, the Greek indexµ refers to the space-
time index,0 = t, 1 = x, 2 = y, 3 = z. It is straight-
forward to derive this identity from the Lagrangian density
L = iψ†ψ̇ − 1

2m∇ψ†∇ψ − V (ψ†ψ). Since the translational
invariance is not broken in the superfluid,T i0 does not create
a gapless excitation, while those created byBi0 and j0 are
linearly dependent, hence redundant.

Vortex lattice. — Perhaps the most nontrivial example
is the redundancy among NGBs in a vortex lattice. Rotat-
ing superfluids and atomic BEC form a triangular lattice of
quantized vortices [10], spontaneously breaking the transla-
tional symmetry. It is known that the system supports a soft
collective oscillation with a quadratic dispersion, so-called
Tkachenko mode [11–14]. Since the Tkachenko mode is often
associated with an elliptically-polarized lattice vibration, one
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may naively expect the existence of the usual (Bogoliubov)
phonon, which corresponds to the fluctuation of the superfluid
phase. Until today, all prior works on the collective modes
in the system have been based on the hydrodynamic theory.
Although they seem to imply the absence of such a gapless
mode, the reason for the missing has been left unclear.

To clarify the low-energy structure of the system, here we
construct an effective Lagrangian. In order to discuss it from
the symmetry-breaking point of view, we do not take into
account the inhomogeneity due to trapping potential or the
centrifugal potential. In other words, we focus on the region
where the trapping potential almost cancels the centrifugal po-
tential but still retains a finite particle density. Our system thus
can be rephrased as bosons which couple to an effective uni-
form magnetic fieldBeff = 2mΩ/eeff as if they have a charge
eeff . The effective Lagrangian for vortices in superfluids has
been discussed in several papers [15], but they did not discuss
the vortex lattice configuration. They also introduced several
fields in addition to NG degrees of freedom, which is not suit-
able for our purpose.

Let us start with the standard Lagrangian [16],

L =
i

2
(ψ†ψ̇ − ψ̇†ψ)− 1

2m
|∇ψ|2

−Vtrap(~x)ψ†ψ − 1

2
g(ψ†ψ)2. (9)

We restrict ourselves to 1+2D and the zero temperature. To go
to the corotating frame with the angular frequency~Ω = Ωẑ,
one makes the substitution∂t → ∂t − ~Ω × ~x · ∇. Assuming
a Bose–Einstein condensate, we plugψ =

√
ne−iθtot into the

Lagrangian and obtain

L =
i

2
(ψ†ψ̇ − ψ̇†ψ)− 1

2m
|(∇− im~Ω× ~x)ψ|2

−Veff(~x)ψ†ψ − 1

2
g(ψ†ψ)2

= nµ− (∇n)2
8mn

− Veff(~x)n− 1

2
gn2

≃ 1

2g
[µ− Veff(~x)]

2, (10)

whereVeff(~x) ≡ Vtrap(~x)−
m

2
Ω2x2 and

µ ≡ θ̇tot −
1

2m
(∇θtot +m~Ω× ~x)2.

In the third line (10), we integratedn out, keeping only the
leading term in the derivative expansion [17].

If we neglect the effective potentialVeff(~x), as we do so for
the rest of the paper, the Lagrangian possesses themagnetic
translational symmetry,

ψ′(~x + ~a, t) = ψ(~x, t)eim~x·~Ω×~a. (11)

Because of the lack of Galilean invariance, the energy mo-
mentum tensor no longer satisfiesT 0i = mji. Instead,

T 0i = mji − 2mΩǫijxjj0. (12)

In the vortex lattice system, bothP i ≡
∫

ddxT 0i andN ≡
∫

ddx j0 are spontaneously broken. However, according to
our general criterion, the operator identity Eq. (12) suggests
thatT 0i andj0 do not produce independent NGBs. We will
explicitly verify this claim in the following.

In the presence of vortices, the phaseθtot contains singu-
larities. We decomposeθtot into the regular partθreg and
the vortex partθsing; i.e., θtot = θreg + θsing. Sinceθsing
is only defined up to a smooth function, this decomposition
is not unique and we will fix the ambiguity later. Due to
the singularity,θsing does no longer satisfyd2θsing = 0. In
fact, ∗d(dθsing) (∗ is the Hodge dual of1 + 2D Minkowski
space) can be identified as the vortex currentjvortex (jµvortex =
ǫµνλ∂ν∂λθsing) that automatically satisfies the topological
conservation lawd ∗ jvortex = ∂µj

µ
vortex = 0.

Now let us introduce a continuum description of the vor-
tex dynamics. Because the crystalline order breaks the mag-
netic translation, we introduce fieldsXa that specify the
position of the vortices. Here, we follow the notation in
Ref. [18]: Xa is the Lagrangian coordinate frozen on the
lattice, whilexi is the Eulerian coordinate. We fix the re-
lation betweenXa and xi in such a way that~u(~x, t) ≡
~x− ~X(~x, t) represents the displacement from the equilibrium
position~x. The vortex current in the continuum description
can be expressed asjvortex = ∗ 1

2m0ǫabdX
a∧dXb (jµvortex =

1
2m0ǫ

µνλǫab∂νX
a∂λX

b) [18] wherem0

2π = −mΩ
π

[16] is the
number density of the vortices in the equilibrium.

By equating these two expressions for the topological cur-
rent, we haved(dθsing) = −mΩǫabdX

a ∧ dXb, which gives

dθsing = −mΩǫabX
adXb + dχ. (13)

A smooth functionχ corresponds to the ambiguity mentioned
above. We chooseχ = mΩǫjkx

jXk so that the explicit coor-
dinate dependence drops from the Lagrangian. Assuming the
triangular lattice and adding the corresponding elastic energy
Eel(∂~u) ≡ (2C1+C2)(∇·~u)2+C2(∇×~u)2 (in the notation
of Ref. [13]), we arrive at our effective Lagrangian,

Leff =
1

g
µ2 − Eel(∂~u), (14)

µ = θ̇reg −m~Ω · ~u× ~̇u

− 1

2m
(∇θreg + 2m~Ω× ~u−mΩǫklu

k∇ul)2.(15)

The ground state ofH −µ0N (N is the total number of parti-
cles) is characterized asθreg = µ0t and~u = 0. Leff describes
the dynamics of fluctuationϕ ≡ µ0t − θreg and~u = ~x − ~X.
Similar expressions can be found in Ref. [19] that discusses
the vortex lattice in superconductors in a different context, but
its derivation is empirical in contrast to ours based on symme-
try and derivative expansion.

As a nontrivial test, let us derive hydrodynamic equations
as the Euler-Lagrange equations of the effective Lagrangian.
Variation w.r.t θreg gives the continuity equation∂µjµ =
∂tn+∇ · (n~v) = 0, wheren ≡ µ

g
and

~v ≡ − 1

m
(∇θreg + 2mΩ× ~u−mΩǫklu

k∇ul). (16)
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Since we implicitly assumed that vortices are massless and
hence~u does not have the kinetic term∝ ~̇u2, the Equa-
tion of Motion (EOM) of the displacement vector requires
the balance between the Magnus force and the elastic force

~FMagnus + ~Fel = 0, where ~Fel ≡ δEel

δ~u
and ~FMagnus =

2mn~Ω × [~v − (∂t + ~v · ∇)~u]. All of these equations agree
with those discussed in Refs. [12, 13] based on the linearized
hydrodynamic theory, which in turn verifies our effective La-
grangian. Note that our expressions are fully non-linear as
required by the symmetry,e.g., the third term in Eq. (16), be-
yond the linearized expressions in their papers.

Let us analyze the low-energy collective mode in our ef-
fective Lagrangian. If we keep only quadratic terms in the
fluctuationϕ and~u, the Lagranigan becomes

Leff ≃ n0

2mc2s

[

ϕ̇2 − c2s(∂iϕ+ 2mΩǫiju
j)2

]

−n0m~Ω · ~u× ~̇u− Eel(∂~u). (17)

In order to compare our expressions to those in the litera-
ture, we have eliminatedg andµ0 in terms of the equilib-
rium densityn0 and the superfluid velocitycs by g = µ0

n0

andµ0 = mc2s. The remarkable feature of the effective La-
grangian is the mass term−2mn0Ω

2~u2. Combined with the
second term, which makesux anduy canonically conjugate
to each other, it explains the gapped mode with a gap2Ω in
the spectrum [12, 13]. This mode can be identified as the col-
lective mode with the cyclotron gapeeffBeff

m
= 2Ω predicted

by Kohn’s theorem [20].
Given the gap, one can safely integrate~u out by using

EOM,

ui =
1

2mΩ
ǫij∂jϕ+O(∂0∂i, ∂i∂j∂k). (18)

At the leading order in the derivative expansion, the remaining
Lagrangian is

Leff ≃ n0

2mc2s

[

ϕ̇2 − C2

2mn0

c2s
Ω2

(∇2ϕ)2
]

, (19)

which describes the Tkachenko mode with the dispersion re-

lationE(~p) =
√

C2

2mn0

cs
Ω p

2+O(p4) [12, 13]. The Tkachenko

mode thus can be understood as the phase oscillation, and the
vortex lattice simply follows transverse to the motion of the
superfluid through Eq. (18).

After all, there is only one gapless mode in the vortex lat-
tice, as expected from our general criterion. In the deriva-
tion, we introduced the redundant fields in our effective La-
grangian and observed a mass term∝ ~u2 for them. An effec-
tive Lagrangian of crystal phonons does not usually contain~u
without any derivatives, because the invariance under the shift
~u′ = ~u+~a prohibits it. This is why we usually expect gapless
phonons [21]. However, in the current example, the appear-
ance of the mass term does not contradict with the symmetry
— the original magnetic translation is still exactly realized in

our effective Lagrangian Eq. (14) in a nontrivial manner,

~u′(~x+ ~a, t) = ~u(~x, t) + ~a, (20)

θ′(~x+ ~a, t) = θ(~x, t)−m~a · ~Ω× [~u(~x, t)− 2~x]. (21)

This symmetry also protects the quadratic dispersion relation
of the Tkachenko mode; i.e., the lower order term∝ (∇ϕ)2
cannot be generated by renormalization process in Eq. (19).

It is instructive to compare the vortex lattice with a super-
solid [18]. A supersolid exhibits a similar symmetry-breaking
pattern; namely, it breaks both (usual) translation and U(1)
phase rotation. In contrast to the vortex lattice case, eachof
d momentum operatorsP i and the number operatorN inde-
pendently produces a NGB, giving rise tod+1 NGBs in total
in d-space dimensions. This is consistent with our criterion,
since in the case of supersolid, the Galilean invariance [18]
(more precisely, the non-relativistic general-coordinate invari-
ance [22]) leads toT 0i = mji. Therefore phonons origi-
nated from the translational symmetry breaking and Bogoli-
ubov mode are not redundant.
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Note added. — After submitting our manuscript, the au-
thors were informed a related preprint [23]. Although their
approach is different and limited to the example of crystals,
their result is consistent with our criterion.
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