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Frequency shifts from background gas collisions currently contribute significantly 

to the inaccuracy of atomic clocks. Because nearly all collisions with room-

temperature background gases that transfer momentum eject the cold atoms from 

the clock, the interference between the scattered and unscattered waves in the 

forward direction dominates these frequency shifts. We show they are ≈10 times 

smaller than in room-temperature clocks and that van der Waals interactions 

produce the cold-atom background-gas shift. General considerations allow the 

loss of Ramsey fringe amplitude to bound this frequency shift. 

PACS: 06.30.Ft, 34.50.Cx 

The frequency shift due to background gas collisions is currently a leading systematic 

uncertainty in the best atomic clocks, which have accuracies of 2.1×10−
16 [1,2]. Coherent 

superpositions are central to atomic clocks and atom interferometers for precision measurements 

[3,4]. While the underlying scattering theory is thoroughly established, the scattering physics of 

coherences [5] continues to unfold – recent examples include phase shifts of scattered 

coherences [6] and interactions when non-identical coherent superpositions collide [7-9]. Here 

we treat the scattering of cold clock atoms, coherent superpositions of two internal states, by a 

background gas at room temperature. 

Current laser-cooled fountain clocks bound the frequency shift from background gas 

collisions using measurements from room-temperature clocks [10]. This is not justified since any 

momentum transferred to a cold atom almost always prevents it from being detected (Fig. 1). A 

first guess is that the frequency shifts of the remaining atoms must be much smaller. If so, does a 

frequency shift remain? Ion clocks that use quantum-logic to readout the atom’s trap state are a 
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particularly striking example [11] since any momentum transfer destroys the detected coherence. 

We show that the dominant frequency shift for cold atoms has no momentum transfer. The scale 

of the shift is smaller than the shift used from room-temperature clocks and has the opposite 

sign. Interestingly, the shift can be directly related to the decrease in Ramsey fringe amplitude 

due to background gas collisions, with the same dependences, giving another technique to 

evaluate and reduce this currently significant systematic error. We treat the quantum scattering 

for cold atom coherences and show that they are only sensitive to the weak, usually long-range, 

collisions, while room-temperature clocks are sensitive to both short and long-range collisions. 

Polarizable gases give large contributions, motivating a reduction [2] and evaluation of shifts 

from background cesium vapor. We also discuss the implications for ion [11] and optical lattice 

clocks [12-14], which trap cold, coherent superpositions. 

When an atom, in a superposition of two internal clock states, collides with a perturber, the 

scattered outgoing wave contains a coherent superposition of the two clock states, each with an 

angle-dependent scattering amplitude, and the perturber. Because, the scattering amplitude is 

generally different for the two clock states, their coherent superposition experiences a phase 

shift; each clock state can even scatter in classically different directions, leading to a loss of 

coherence [5]. 

General behaviors of the background gas scattering of cold clock atoms emerge from a partial 

angular-momentum wave expansion. It leads to three contributions to the outgoing probability 

current, an unscattered wave, a scattered wave, and an interference between the scattered and 

unscattered waves in exactly the forward direction, θ=0. For cold atoms, which have negligible 

momentum in their rest frame, we show below that the interference term (θ=0) contributes much 

more than the scattered wave, even though the scattered wave is highly peaked near θ≈0 [5,15-

17]. For the usual clock Ramsey spectroscopy, two separated π/2 pulses with a relative phase φ, 

the interference current of the excited state |2〉 is j2,int=π/µ(Re[f1(0)−f2(0)]sin(φ)−2Im[f1(0) 

+f2(0)]cos2(φ/2)), as outlined below. Using the scattering amplitudes fγ(θ)=Σ(2ℓ+1)[exp(2iδγℓ)−1] 

Pℓ[cos(θ)]/2ik gives: 
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Here, µ is the reduced mass, δγℓ is the partial wave phase shift for clock state γ, n is the 

background gas density, and k is the relative wave-vector. The sin(φ) term jshift is the frequency 

shift. The cos2(φ/2) term jamp gives the decrease of the cold atom Ramsey fringe amplitude, as in 

the attenuation of a beam while passing through gas. In a room-temperature clock, including cell 

clocks [10], the sum of the scattered and interference currents of the clock atoms is, as we derive 

below: 
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We can see the dominant physics from (1) and (2). For cesium clock atoms, the phase shifts 

are nearly the same for long-range collisions so δ2ℓ= δ1ℓ+Δδℓ, with Δδℓ small. Thus, when δ1,2ℓ>1, 

the frequency shift sin(2δ1ℓ)−sin(2δ2ℓ)≈−2Δδℓcos(2δ2ℓ) is on average zero, although these 

collisions do reduce the Ramsey fringe amplitude 1−jamp. However, in (2) the frequency shift is 

proportional to sin(2δ1ℓ−2δ2ℓ) and does not average to zero since Δδℓ is not large for most ℓ. Thus, 

for partial waves with large δγℓ, the frequency shift (1) is well suppressed for cold clock atoms 

that remain cold after the scattering, as compared to the shift (2) of room-temperature clock 

atoms. When δγℓ is small, the contributions to each are the same. We next give simple analytic 

behaviors for the scattering and then explicitly illustrate these behaviors with model potentials. 

Long-range r−
6 van der Waals interactions dominate the scattering for many systems, 

including ground-state Cs and neutral perturbers. A WKB approximation gives asymptotic 

scattering phase shifts for a –C6r−
6 interaction, δℓ=3πµC6k4/162[ℓ(ℓ+1)]5/2. The phase shift 

grows quickly as ℓ decreases and k increases, corresponding to smaller impact parameters b≈ℓ/k 

and stronger interactions. 
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The C6’s of the two ground-state hyperfine components will be very similar, but not identical 

because the detunings with the excited states are slightly different. Expressing C6 as a sum over 

oscillator strengths, we can bound the difference ΔC6/C6 to be less than hν[E1−
1+(E1+Ep) −

1], 

where hν is the hyperfine splitting and E1 and Ep are the lowest resonant excitation energies of 

cesium and the perturber. For background Cs atoms, this gives ΔC6/C6 less than 1/25000 and 

1/34,000 for H2. State-of-the-art calculations [18,19] can give more accurate ΔC6’s, but this 

illustrative and simple bound is useful. With it, we now derive general background-gas 

frequency shifts for cold atoms. 

Using the WKB asymptotic scattering phase shifts, we sum (1) over all ℓ and average over the 

thermal speed distribution exp(−k2/ku
2)dk3, with 2ku

2=2µ2kBT/mp for perturbers of mass mp. 

This sum and thermal average are analytic to leading order: 
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with numerical constants given to the indicated accuracy. 

In (3) it is striking that the ratio of the frequency shift current to the attenuation of the Ramsey 

fringe amplitude is ΔC6/13.8C6. Thus, clock frequency shifts from background gas collisions can 

be very generally bounded by measuring the associated decrease of the Ramsey fringe amplitude. 

If background Cs and H2 eject fewer than ΔA=20% of the cold clock atoms during the TR=0.5s 

Ramsey interrogation, the fractional frequency shift −Δν/ν=ΔA/(13.8πνTR)ΔC6/C6 must be less 

than 4×10−
17, which currently contributes insignificantly [1,2]. We note that this limit is the ratio 

of a frequency shift for collisions that have large impact parameters (δℓ<1) to the attenuation 

from collisions with δℓ>1 (small impact parameters), where sin2(δνℓ) averages to ½. It is general, 

provided that the power law interaction is sufficiently strong to dominate other interactions for 

δℓ1. 

Explicit calculations: We now illustrate the behaviors of (1-3) with model potential surfaces for 

background H2 and Cs vapor, the two most likely background gases in Cs fountain clocks. For 
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Cs-Cs scattering we use V(r)=−C6/r6+C12/(r+3.2+δr)12 with C6=6890 in atomic units (a.u.) [20] 

and C12= 1.8535×1011 a.u., to reasonably represent the Cs2 triplet potential of [21]. Here we 

parameterize a short-range perturbation δr in V(r). Qualitatively, during short-range interactions, 

the perturber electrons tend to push the valance electron to overlap more with the nucleus, 

leading to a positive frequency shift for room-temperature clock atoms. For long-range attractive 

van der Waals interactions, the valence electron’s overlap with the nucleus is reduced and 

therefore the hyperfine frequency decreases [10]. For H2 we use a 6-12 model potential with 

C6=170 a.u. [22] and C12=6.26×107 a.u., approximating a hard core estimate from a density 

functional calculation. 

Fig. 2(a) shows the partial wave phase shifts for the most probable perturber speed ku/µ for 

Cs-Cs scattering. The attractive long-range van-der Waals interaction gives the asymptotic phase 

shift above for large ℓ (gray dashed line) and δℓ exceeds 1 comfortably in the Cs2 long-range van 

der Waals potential. At small ℓ the phase shift turns negative for the repulsive hard-core 

scattering. Versus k, the phase shift in Fig. 2(b) for ℓ=203 has a maximum near k=24 Å−
1 and a 

series of phase jumps through Fano-shape resonances at k=9 to 18 Å−
1 (inset). Fig. 2(c) shows the 

corresponding frequency shift from background gas collisions. At low k, the angular momentum 

barrier gives small scattering phase shifts and small frequency shifts. At high k, the frequency 

shift oscillates as the phase shift successively wraps through 2π. Near k=24 Å−
1 the phase is 

stationary, leading to a positive contribution to the thermally averaged frequency shift for ℓ=203. 

The narrow Fano resonances produce large positive and negative frequency shifts versus k [Fig. 

2(c) inset], but are insignificant after thermal averaging. The frequency shift jshift,C6,ℓ is linear in 

ΔC6 and scaled so that multiplying it by −ΔC6/C6 gives the actual shift. 

Fig. 2(d) shows the thermally averaged scattered probability currents for cold and hot-atom 

background gas collisions. As ℓ decreases, the maximum phase in Fig. 2(b) increases, and 

therefore the frequency shifts from the stationary region in Fig. 2(c) oscillates, producing the 

oscillation of 〈jshift,C6,ℓ〉 in Fig. 2(d). For large ℓ the shift for cold atoms asymptotically follows ℓ−
5 

(inset). The shift for hot-atoms jhot,C6,ℓ does not oscillate with ℓ, increasing as ℓ decreases, until 
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the phase shift difference becomes large here, while more realistically the interactions are no 

longer r−
6. The gray curve shows the attenuation of cold atom Ramsey fringe jamp,C6,ℓ, which too 

is large for moderate ℓ and then falls as ℓ−
10. We also show the shifts for short range perturbations 

jshift,δr,ℓ and jhot,δr,ℓ. These are linear in δr and normalized so that the magnitude of the total 

thermally averaged shift for hot atoms is the same as for jhot,C6,ℓ. The shift for δr is biased to 

smaller ℓ (small impact parameters) for hot atoms as compared to jhot,C6,ℓ. For cold atoms, the 

normalized sensitivity is essentially the same for moderate ℓ, again showing the sensitivity to the 

stationary phase as in Fig. 2(c), but then goes to zero for large ℓ, which do not probe short-range 

perturbations. 

Fig. 2(e) shows the running sum from ℓ to ∞ of the thermal averages in Fig. 2(d). We see that 

the oscillations give no net contribution because the stationary phase in Fig. 2(b) sweeps 

smoothly versus ℓ. Therefore, short range perturbations δr give a negligible shift, especially 

considering that it is further suppressed because the long-range hot shift Σ〈jhot,C6,ℓ〉 is much larger 

than Σ〈jhot,δr,ℓ〉. Here we indeed see that Σ〈jshift,C6,ℓ〉 gets all of its contributions from large ℓ and 

the ratio Σ〈jshift,C6,ℓ〉/Σ〈jamp,C6,ℓ〉 is 13.3, close to 13.8 in (3). Note that the shift for hot atoms from 

this model potential, essentially ΔC6/C6Σ〈jhot,C6,ℓ〉, overestimates the shift for cold atoms 

ΔC6/C6Σ〈jshift,C6,ℓ〉, by a factor of 200. From the sum over all ℓ in Fig. 2(e), a background Cs 

density n=107 cm-3 gives −Δν/ν=ΔC6/πνC6Σ〈jshift,C6,ℓ〉 <6.8×10−
18. 

Fig. 3 shows results as in Fig. 2 for our Cs-H2 model potential. Here, in comparison to Cs-Cs 

scattering, C6 is small enough that the scattering phase shifts do not become large in the van-der-

Waals regime of the potential surface and the range of contributing ℓ’s is correspondingly 

smaller. The shift jshift,δr,ℓ from a short range perturbation δr in Fig. 3(d) is now slightly different 

than jshift,C6,ℓ, but again oscillates along with the stationary phase versus k. He and H2 have the 

smallest polarizabilities and these are sufficiently small that the van der Waals phase shifts are 

not large. Thus, short-range and ΔC6 perturbations both contribute in the same range of ℓ‘s [Fig. 

3(d) inset]. Despite the moderate van-der-Waals phase shifts, the ratio Σ〈jshift,C6,ℓ〉/Σ〈jamp,C6,ℓ〉 in 

Fig. 3(e) is 9.6, not so much less than 13.3 for a highly polarizable Cs gas, and gives  
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−Δν/ν<4×10−
17 for ΔA<20%. Again the model shifts for hot atoms overestimates the shift for 

cold atoms, by a factor of 10 for ΔC6 and 94 for δr. The sum over all ℓ in Fig. 3(e) gives 

−Δν/ν=ΔC6/πνC6Σ〈jshift,C6,ℓ〉 <5.1×10−
18 for n=107 cm-3. It has the opposite sign and is an order of 

magnitude smaller than the measured room-temperature clock shift [10], which has partially 

cancelling short and long-range perturbations. 

In ion clocks, the ions induce a dipole moment of the neutral background gas yielding a strong 

r−
4 interaction. The differential clock state perturbation occurs through the dipole-induced-dipole 

r−
6 interaction, giving a small ΔC6, which will have negligible consequences for the interference 

frequency shift (1), due to the large r−
4 phase shifts. For lattice clocks, r−

6 interactions dominate, 

but with a larger ΔC6, not significantly suppressed by the energy difference of the 1S0 and 3P0 

clock states as compared to the energies of their strongest resonances. More polarizable clock 

atoms, including Sr and Yb, have naturally larger cross sections in (3). 

Scattering of Coherent Superpositions: Before scattering, a π/2 pulse prepares clock atoms in a 

coherent superposition of internal states |1〉 and |2〉. After a background atom collides with a 

clock atom, with center-of-mass momentum k ẑ , its wavefunction is |Ψ〉=2−
½[exp(ikz)  

+f1(θ)exp(ikr)/r]|1〉+2−
½[exp(ikz)+f2(θ)exp(ikr)/r]|2〉, in a frame rotating at the clock frequency, 

where fγ(θ) is the scattering amplitude of a spherically symmetric potential [23]. Applying the 

second Ramsey π/2 pulse with phase φ, the excited state amplitude is 〈2|Ψ〉=½[exp(ikz) 

+f1(θ)exp(ikr)/r]+½exp(−iφ)[exp(ikz)+f2(θ)exp(ikr)/r]. 

The excited state probability current density is /µIm(〈Ψ|2〉∇〈2|Ψ〉). In the forward direction 

the cross term between exp(ikz) and exp(ikr) as r→∞ yields the interference current j2,int. Using 

fγ(θ) and summing over distributed scatterers gives (1). The scattered current j2,sc(θ) equals 

k/2µ(Im[f1(θ)f2
*(θ)]sin(φ)+2Re[f1(θ)f2

*(θ)]cos2(φ/2)+2|f1(θ)−f2(θ)|2). We get (2) by adding j2,sc 

and j2,int and integrating over all solid angles, using the orthogonality of Pℓʹ′(x)Pℓ(x). 

The scattered current in the forward direction j2,sc(0)dΩ is non-zero, but small relative to j2,int. 

In fountain clocks, velocity changes of vmax≈2 cm/s eject atoms from the fountain so that they are 

not detected. This limits δθ to mCsvmax/k1 mrad. For this δθ, Pℓ[cos(θ)]≈1 for  ℓ1500 [5], 
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giving j2,sc(θ≈0)dΩ≈¼δθ2jshiftsin(φ)Σγ,ℓ(2ℓ+1)sin2(δγℓ)+… [24]. Using the WKB phase shifts, we 

get a thermally averaged 〈j2,sc(0)dΩ〉=0.31〈jshift〉(mpµC6
2/14ku

2)1/5mCs
2vmax

2. For Cs or H2 

background gases and vmax≈2 cm/s, the shift from scattered atoms is less than 1% of that from 

jshift. 

In summary, the frequency shifts of laser-cooled atomic clocks due to room-temperature 

background gases is an order of magnitude or more smaller than the shifts for room-temperature 

clocks. Thus, the significant uncertainty from background gas collisions in the most accurate 

cesium fountains clocks can become negligible.  For cold clock atoms, that are post-selected to 

remain cold after scattering, the interference in the forward direction between the scattered and 

unscattered atomic waves dominates the frequency shift. Analytic and model potential 

calculations show that weak long-range, and not strong short-range interactions produce 

frequency shifts. General considerations show that the decrease of the Ramsey fringe amplitude 

can bound clock frequency errors below the current 10−
16 level. Essentially all background gases, 

including H2 and perhaps He, have sufficient polarizability to exhibit these behaviors. 

We acknowledge helpful conversations with M. Cole, I. Iordanov, J. Sofo, and K. Szymaniec, 

and financial support from NASA, NSF, and Penn State. 
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Fig. 1. (Color online) Background gas collisions with cold clock atoms eject clock 

atoms so that they are not detected. Nonetheless, undeflected cold-atom coherences 

experience a phase shift due to the scattering. The frequency shifts of undeflected cold 

clock-atoms are due to long-range collisions with polarizable background gases. 

Fig. 2. (Color online) (a) Partial wave scattering phase shifts for a model Cs-Cs 

scattering potential for the most probable speed at room temperature, ku=28.8 Å−
1. The 

inset shows the asymptotic van der Waals ℓ−
5 scaling. (b) Energy dependence of 

scattering phase shift for ℓ =203. At low k, there are Fano shape resonances, shown in the 

inset at 17.0 and 17.3 Å−
1, which produce rapid variations of the scattering phase. (c) 

Energy dependence of the ℓ =203 frequency shift of cold Cs clock atoms for a 

background Cs density n=107 cm−
3. The stationary phase near k=24 Å−

1 contributes a non-

zero shift while the fast oscillations and the narrow Fano resonances in (c) average to 0. 

d) Thermally averaged frequency shifts for cold and hot Cs clock atoms, for long-range 

perturbations ΔC6 and short-range δr (see text). The decrease in the Ramey fringe 

amplitude jamp,C6,ℓ is also shown. In the inset, jshift,C6,ℓ oscillates for ℓ<480 and the shift for 

short range perturbations jshift,δr,ℓ is negligible for large ℓ. (e) Running sum from ℓ to ∞ of 

the thermal averages in (d). Long-range perturbations ΔC6 produce a cold atom shift at 

large ℓ whereas cold atoms are immune to short-range perturbations δr. Small ℓ’s 

dominate the shifts for hot atoms and the loss of the cold atom Ramsey fringe amplitude. 

Fig. 3. (Color online) Cs-H2 model potential scattering as in Fig. 2. Here, H2 is far 

less polarizable so the long-range van der Waals interaction produces smaller phase shifts 

in (a-c). The most probable speed of H2 gives ku=4.95 Å−
1. (d-e) Even though the van der 

Waals phase shifts are not large, the cold atom frequency shift is still suppressed for 

short-range perturbations δr (see text). 








