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Abstract

We examine distance record-setting by a random walker in thepresence of measurement error,δ, and

additive noise,γ and show that the mean number of (upper) records up ton steps still grows universally

as 〈Rn〉 ∼ n1/2 for largen for all jump densities, including Lévy distributions, andfor all δ andγ. In

contrast, the pace of record setting, measured by the amplitude of then1/2 growth, depends onδ andγ.

In the absence of noise (γ = 0), the amplitudeS(δ) is evaluated explicitly for arbitrary jump distributions

and it decreases monotonically with increasingδ whereas, in case of perfect measurement(δ = 0), the

corresponding amplitudeT (γ) increases withγ. The exact results forS(δ) offer a new perspective for

characterizing instrumental precision by means of record counting. Our analytical results are supported by

extensive numerical simulations.
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An upper record (record, for short) occurs at stepn in a time series if then-th entry exceeds all

previous entries. The statistics of record-breaking events in a discrete time series with independent

and identically distributed (i.i.d) entries have been studied extensively [1–3]. Record statistics play

a major role in time series analysis, in diverse contexts, including sports [4–7], biological evolution

models [8, 9], theory of spin-glasses [10, 11], models of growing networks [12], analysis of climate

data [13–17], and quantum chaos [18]. The quantity of central interest is the mean number of

records〈Rn〉 up to stepn. For a time series with i.i.d entries, a striking universal result is that

〈Rn〉 ∼ lnn for largen [1], independent of the distribution of the individual entries. However,

this universal logarithmic growth breaks down when the timeseries entries arestrongly correlated,

the simplest example being the case of a random walk where thetime series represents the walker

positions at discrete time steps.

While the subject of random walks has an enormous range of applications well beyond the

original context of diffusion and Brownian motion, its exploration in terms of record setting is

relatively recent. The basic question is: how often does a random walker, moving in continuous

space by jumping a random distance at each discrete time step, set a distance record, i.e., advance

farther from the origin than at all prior steps? In other words, how does the mean number of such

record-setting events grow with the number of steps? This isa natural question in many different

contexts, such as in the evolution of stock prices [19, 20] and queueing theory [21]. In the one-

dimensional (1d) case, with pure diffusion, a universally valid result was found [22] for the mean

of the upper record-setting events〈Rn〉, namely, that it equals(2/
√
π)n1/2 for largen, wheren

is the number of steps, regardless of the length distribution of jumps (e.g., holds even for Lévy

flights). This square root growth of〈Rn〉 was also found numerically in 2d and 3d. Considering

a drift, an abrupt shift in the scaling exponent from1/2 to 1 was identified [23]. Exact analytical

results were also found in 1d for a random walker with arbitrary drift [24, 25], and for continuous

time [26] and multiple [27] random walkers. In the latter case, the theoretical results agreed with

an analysis of multiple stocks from the Standard & Poors 500 index [27].

However, to apply these results to interpretation ofreal experiments, the notion of a record –

“advance farther from the origin than at all prior time steps” – requires closer examination. Why?

Because measurement error,δ, and noise,γ, are unavoidable; for instance,δ can be the resolution

of the detector whileγ can describe white noise from an instrument reading. Ties become possible

because of the “fuzziness”, as discussed, e.g., in [17, 28, 29]. Hence, the question arises: how does

the presence ofδ or γ affect the growth of〈Rn〉 and the associated record-setting pace? Related
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questions were raised in the statistics literature, e.g., in terms ofδ-exceedance records [30, 31]

and in the physics literature [29], but asymptotic results are available only for time series with i.i.d

entries. The question has apparently never been raised in the context of correlated entries such as

random walks. Does〈Rn〉 ∼ n1/2 scaling persist despite the presence ofδ or γ and for various

jump length distributions? If so, how is the amplitude of then1/2 growth (hereafter, “amplitude”)

affected? By way of preview, the universal growth exponent of 1/2 holds but the amplitude carries

the information about error and noise in distinct ways.

We define a “one-sided” record (positive maximum) so that thei-th entry in a time series,xi,

is a random walk, record-breaking event (record, for short)if it exceeds all previous values in the

sequence, i.e., ifxi > max (x1, x2, . . . , xi−1). We henceforth interpretxi as the distance of the

random walker from the origin at thei-th time step. However, because of the presence of a (fixed)

δ, we definexi to be a record (δ-record) only if it exceeds all previous values in the sequence by,

at least, δ. Similarly, accounting for noise,xi is a record-breaking event if, with the addition ofγ,

it exceeds all previous values in the sequence. A subtlety isthat in the presence of error, a record

can be defined as being larger – by the amount of the error – thanthe last record, or than the last

maximum, the two being identical in the absence of error. Here, we enumerate records larger than

the previous maximum; this is more amenable to theoretical development.

We focus first on the influence ofδ. Consider a discrete-time sequence{x0 = 0, x1, x2, . . . , },

representing the position of a 1d random walker starting at the originx0 = 0. The positionxm

at stepm is a continuous stochastic variable that evolves via the Markov rule,xm = xm−1 + ηm

whereηm represents the jump at stepm. The ηm are i.i.d., each drawn from a symmetric and

continuous jump densityf(η). Note that althoughηm’s are uncorrelated,xm’s are correlated. We

are interested in the statistics of the number of recordsRn up to stepn. A record occurs at stepm

if xm− δ ≥ xk for all k = 0, 1, 2, . . . , (m− 1) whereδ ≥ 0 represents the measurement error. For

δ = 0, the statistics ofRn are known to be universal, i.e., independent of the jump density f(η)

[22]; the mean record number〈Rn〉 up to stepn is [22]

〈Rn〉 = (2n+ 1)

(

2n

n

)

2−2n −−−→
n→∞

2

π1/2
n1/2 . (1)

We now examine how〈Rn〉 is affected byδ. Define an indicatorσm = {1, 0} with σm = 1 if a

record occurs at stepm and0 otherwise. We callx0 = 0 a record, i.e.,σ0 = 1. Then the number

of recordsRn up to stepn isRn =
∑n

m=0 σm. We average this expression over different histories.
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Becauseσm is a binary{1, 0} variable, its average〈σm〉 is just the probability that a record occurs

at stepm. Hence,

〈Rn〉 =
n

∑

m=0

〈σm〉 =
n

∑

m=0

rm(δ), (2)

whererm(δ) denotes the record rate, i.e., the probability that a recordoccurs at stepm. By

definition, r0 = 1, andrm(δ) = Prob [xm − δ ≥ max [0, x1, x2, . . . , xm−1]] . Thus, rm(δ) is

the probability of the event that the random walker, starting at the origin, reachesxm at step

m, while staying belowxm − δ at all intermediate steps between0 andm, where one needs to

finally integrate over allxm ≥ δ. To compute this probability, it is convenient to change variables

yk = xm − xm−k, i.e., observe the sequence{yk} with respect to the last position and measure

time backwards. Then,rm(δ) is the probability that the new walkeryk, starting at the new origin

at k = 0, makes a jump≥ δ at the first step and then subsequently up tom steps stays aboveδ,

i.e.,rm(δ) = Prob [y1 ≥ δ, y2 ≥ δ, . . . , ym ≥ δ|y0 = 0].

To computerm(δ), we note that in the first step, the walker jumps toy1 = z + δ from y0 = 0

wherez ≥ 0 and subsequently up to(m− 1) steps it stays above the levelδ. Writing yk = zk + δ,

we re-expressrm(δ) as

rm(δ) =

∫ ∞

0

f(z + δ) qm−1(z)dz (3)

whereqn(z) is the probability that a random walker, starting initiallyat z, stays positive up to

n steps. This persistence probabilityqn(z) has been thoroughly studied in the literature for ran-

dom walks (see [32]) with arbitrary jump densityf(η), and a general expression for its Laplace

transform is known as the Pollaczek-Spitzer formula [33, 34]. It states that

∫ ∞

0

dz e−λz

∞
∑

n=0

snqn(z) =
1

λ
√
1− s

φ(s, λ) (4)

whereφ(s, λ) = exp

[

−λ
π

∫∞

0

ln(1−sf̂(k))
λ2+k2

dk

]

and f̂(k) =
∫∞

∞
f(η) ei kη dη is the Fourier trans-

form of the jump densityf(η). Note that whenδ → 0, the integral in (3) is justqm(0). Thus

rm(0) = qm(0). From (4), one can show [32] that
∑∞

m=0 qm(0)s
m = 1/

√
1− s, independent of

the jump density. This is the celebrated Sparre Andersen theorem [35]; when inverted it simply

givesqm(0) =
(

2m
m

)

2−2m. When substituted in (2), it provides the universal result [22] in (1).

However, we are interested inδ > 0. To computerm(δ) for largem in (3), we need the large

m behavior ofqm(z) for a fixedz > 0. This can be extracted by analyzing (4). One finds that the
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leading order behavior of the right side of (4) nears = 1 is simply [φ(1, λ)/λ](1 − s)−1/2. This

means thatqn(z) for largen, with fixedz, must behave likeqn(z) ≈ h(z)/
√
π n. Substituting this

on the left side of (4) and analyzing the leading behavior near s = 1 shows that the left hand side

of (4) behaves as̃h(λ)(1−s)−1/2, whereh̃(λ) =
∫∞

0
h(z)e−λzdz is the Laplace transform ofh(z).

Comparing the left and right sides of (4), we obtain, for largen

qn(z) ≈
h(z)√
πn

with h̃(λ) =

∫ ∞

0

h(z)e−λzdz =
1

λ
φ(1, λ) (5)

whereφ(1, λ) can be read off (4) as

φ(1, λ) = exp



−λ

π

∫ ∞

0

ln
(

1− f̂(k)
)

λ2 + k2
dk



 . (6)

Substituting the asymptotic behavior ofqn(z) from (5) in (3), we obtain, for largem, rm(δ) ≈
U(δ)/

√
πm,U(δ) =

∫∞

0
dzf(z + δ)h(z).

Finally, substituting this asymptotic behavior ofrm(δ) in (2) and summing for largen, the mean

number of records is

〈Rn〉 −−−→
n→∞

S(δ)n1/2, S(δ) =
2√
π

∫ ∞

0

f(z + δ)h(z)dz . (7)

This is the main exact result: for an arbitrary jump densityf(η), the mean record number grows

universally asn1/2 for largen (as forδ = 0), while the amplitudeS(δ) depends non-universally

on δ insofar as it depends explicitly onf(η).

Although we have an exact expression forS(δ) for arbitraryf(η), its explicit evaluation for all

δ is difficult. For instance, to compute it explicitly for arbitrary jump densityf(η), we need to first

compute its Fourier transform̂f(k), evaluateφ(1, λ)/λ from (6), then invert the Laplace transform

(5) to obtainh(z) and finally perform the integral in (7) to determine the amplitudeS(δ).

For the special (yet ubiquitous, e.g, free paths in kinetics) case of an exponential jump density

f(η) = (b/2) exp[−b |η|], it is possible to evaluate the amplitudeS(δ). Here,f̂(k) = b2/(b2+k2);

substituting this in the expression ofφ(1, λ) and integrating yieldsφ(1, λ) = (b + λ)/λ. Hence,

h̃(λ) = (b + λ)/λ2. Inverting this Laplace transform givesh(z) = 1 + bz. Using this explicit

form of h(z) in the expression forS(δ) in (7) and integraing yields an exact expression for the
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amplitude, valid for allδ ≥ 0

S(δ) =
2√
π

exp [−b δ] . (8)

Note that asδ → 0, one recovers the universal amplitude2/
√
π.

Consider next a jump density,f(η), whose tail decays asf(η) ∼ exp[−|η|a] for largeη, where

a > 0. Substituting this in the expression forS(δ) in (7), expanding for largeδ and usingh(0) = 1,

one can show that for largeδ, S(δ) ∼ δ1−a e−δa . For example, for the Gaussian distribution,

f(η) = e−η2/2σ2

/
√
2πσ2, one finds that

S(δ) −−−→
δ→∞

√
2

π

σ

δ
e−δ2/2σ2

. (9)

Finally, consider jump densities with power law tails,f(η) ∼ |η|−µ−1 for largeη with µ > 0.

For Lévy flights,0 < µ < 2, whereas for jump densities with a finite variance,µ > 2. In this

case, rescalingz = δy in the expression forS(δ) in (7) one getsS(δ) = (2/
√
π) δ

∫∞

0
f(δ(y +

1)) h(yδ) dy. For largeδ, the dominant contribution comes from the large argument ofh(z). By

analyzing̃h(λ) in (5) for largeλ, we find that for largez, h(z) ∼ zµ/2 for µ < 2 andh(z) ∼ z for

µ ≥ 2. Substituting this asymptotic behavior inS(δ) gives

S(δ) −−−→
δ→∞

∼ δ−µ+α (10)

whereα = µ/2 for µ ≤ 2 andα = 1 for µ ≥ 2. Thus, in this caseS(δ) decays as a power law for

largeδ.

To test these analytical predictions we performed Monte Carlo simulations for the three jump

densities: (i)f(η) = (1/2) exp[−|η|] (Exponential,b = 1); (ii) f(η) = (1/
√
2π) exp[−η2/2]

(Gaussian,σ = 1), and (iii) f(η) drawn from a Lévy distribution with exponentµ = 1, using [36–

38]. While (i) and (ii) represent normal Fickian diffusion,(iii) represents non-Fickian (anomalous)

diffusion, which can arise in diverse heterogeneous domains such as cells [39], cold atoms [40],

and disordered porous media [41, 42].

Our simulations are conducted with an ensemble of independent random walkers (5000 parti-

cles, each taking106 steps), entering the 1d system at the origin, with step jump lengths drawn

independently from a given pdf. Each particle is moved from step to step according to its actual

(sampled) location, without includingδ; δ is added as a fixed fraction of the mean (median, for

(iii)) jump length, which is chosen as unity. At each step, the particle location is calculated; the
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current distance value must exceed the last maximum by at least δ to qualify as a newδ-record;

otherwise we ignore it. The simulations confirm then1/2 scaling for the growth of mean number

of δ-records, for all values ofδ. Furthermore, the Monte Carlo simulations are compared to the

three analytical predictions forS(δ) in (8), (9) and (10) in Fig. 1, showing excellent agreement.

The amplitudeS(δ) decreases from its universal valueS(0) = 2/
√
π asδ increases, so that fewer

records are counted as the error increases. The decrease inS(δ) is steepest for the Gaussian pdf

and has a much slower decay for the Lévy pdf, in complete agreement with theory. The slowing

down in the Lévy case is due to the anomalously skewed natureof the pdf, with frequent small

jumps and some enormous leaps; as a consequence, potential records set by small jumps are more

prone to being eliminated by theδ error. In contrast, the Gaussian case displays a rapid decline

with the increasing error, due to the compactness of the pdf,so that large jumps are rare and record

events larger than the error are rarer yet.

We now examine the influence of the measurement noiseγ. Let {x0 = 0, x1, x2, . . . , xn}
represent the successive positions of the random walker. Inthis case, a record is registered at

stepm if xm +N (0, γ)∆x > max(0, x0, x1, . . . , xm−1), whereN (0, γ) is a zero-mean Gaussian

random variable with standard deviationγ. The termN (0, γ)∆x mimics the measurement noise.

The noise is added for the purpose of record verification at each step and is not accumulated to the

actual sequence. An analytical treatment analogous to thatfor δ is not yet available and we resort

to numerical experiments, similar to those forδ, with the results shown in Fig. 2. We use the same

pdf’s (i)-(iii) as before, with mean (median, for (iii)) jump length∆x = 1.

While the scaling〈Rn〉 ∼ T (γ)n1/2 for largen persists, in stark contrast to theS(δ), the

amplitudeT (γ) shown in Fig. 2 is an increasing function ofγ for all jump densities. Thus for

γ-records, the noise yields false accounting of records, rendering anapparent〈Rn〉 larger than

the actual one. This spuriously large rate of record formation increases with the magnitude of

the noise and suggests that it might be possible to infer the contribution of noise in diffusion-type

experiments by means of record counting. One first estimatesfrom an experiment the pdf of the

jump lengths, which can then be employed in random walk simulations, to generate a curve for the

amplitudeT (γ) (such as seen in Fig. 2). Returning to an ensemble of experimental measurements

in the real system, one determinesT and then reads off the corresponding value ofγ from the

simulatedT (γ) curve.

The “division of labor” discovered here, i.e., the universality of the scaling exponent, yet the

contrasting dependence of the amplitude on measurement error and noise, suggests a rather differ-
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ent perspective on the notion of instrumental precision, among other things. To illustrate, consider

implications of (8). Exponentially distributed free pathsare the hallmark of kinetic theory and

light scattering in random media, among others. Therefore,the instrumental precisionδ of any

such experiment can be inferred (in units of the mean free path 1/b) via (8) by means of simple

record counting.

The results presented here illustrate the subtlety and richness of record-breaking and counting,

in the presence of instrumental errorδ and measurement noiseγ, in systems where the underly-

ing process can be modelled by a random walk. The decoupling of the growth exponent (1/2,

regardless of precision and noise) from the amplitude (which depends on instrumental precision

and noise in a monotonic, contrasting, and pdf-dependent manner) is significant. While the uni-

versality of the mean record number persists,〈Rn〉 ∼ n1/2, the magnitude of the amplitude carries

the information aboutδ andγ.

Finally, we note that the above Monte Carlo simulations werealso performed on 2d and 3d

orthogonal lattices. The universality of then1/2 record-setting scaling is robust for all dimensions,

and in all cases, the amplitudes displayed qualitative behaviors similar to those shown in Figs. 1

and 2. Moreover, Monte Carlo simulations accounting for two-sided records (absolute distance)

demonstrated the samen1/2 and similar qualitative behavior for the dependence of the amplitudes

on δ andγ.
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FIG. 1: One-dimensional amplitudeS(δ) versus measurement errorδ with Gaussian (stars), exponential
(squares;b = 1) and Lévy (circles;µ = 1) jump length pdf’s. The curves (dotted-dashed, dashed,
solid) are the corresponding analytical results from (9), (8) and (10) with, respectively, functional forms√

2
π δ exp[−δ2/2], (2/π1/2) exp(−δ), and0.69 δ−0.51 . In the Lévy case,µ = 1, henceα = µ/2 = 1/2, and
the theoretical prediction∼ δ−1/2 in (10) is consistent with simulations.
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FIG. 2: AmplitudeT (γ) as a function of the measurement noiseγ for jump lengths (in one dimension)
with Gaussian (stars), exponential (squares;b = 1) and Lévy (circles;µ = 1) pdf’s. The curves represent
quadratic fitsc1 + c2γ
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