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Abstract

We examine distance record-setting by a random walker irptesence of measurement err@rand
additive noise;y and show that the mean number of (upper) records upgteps still grows universally
as(R,) ~ nl/2 for largen for all jump densities, including Lévy distributions, afat all § and~. In
contrast, the pace of record setting, measured by the amelibf then!/2 growth, depends of and .
In the absence of noise (= 0), the amplitudeS(0) is evaluated explicitly for arbitrary jump distributions
and it decreases monotonically with increasing/hereas, in case of perfect measurem@nt= 0), the
corresponding amplitud@'() increases withy. The exact results fof(d) offer a new perspective for
characterizing instrumental precision by means of recorchting. Our analytical results are supported by

extensive numerical simulations.

PACS numbers: 05.40.Fb, 05.60.-k, 02.50.-r, 05.10.Gg



An upper record (record, for short) occurs at stap a time series if the-th entry exceeds all
previous entries. The statistics of record-breaking es/iera discrete time series with independent
and identically distributed (i.i.d) entries have been sdextensively [1-3]. Record statistics play
amajor role in time series analysis, in diverse contextduaing sports [4—7], biological evolution
models [8, 9], theory of spin-glasses [10, 11], models oigng networks [12], analysis of climate
data [13—-17], and quantum chaos [18]. The quantity of cenitarest is the mean number of
records(R,,) up to stepn. For a time series with i.i.d entries, a striking universagult is that
(R,) ~ Inn for largen [1], independent of the distribution of the individual éas. However,
this universal logarithmic growth breaks down when the tg@ees entries argtrongly correlated
the simplest example being the case of a random walk whetatleeseries represents the walker
positions at discrete time steps.

While the subject of random walks has an enormous range dicafipns well beyond the
original context of diffusion and Brownian motion, its egption in terms of record setting is
relatively recent. The basic question is: how often doesndam walker, moving in continuous
space by jumping a random distance at each discrete timesstiep distance record, i.e., advance
farther from the origin than at all prior steps? In other v&igow does the mean number of such
record-setting events grow with the number of steps? Thasniatural question in many different
contexts, such as in the evolution of stock prices [19, 20] qumeueing theory [21]. In the one-
dimensional (1d) case, with pure diffusion, a universadfid/result was found [22] for the mean
of the upper record-setting ever{tg,,), namely, that it equal&/./7) n'/? for largen, wheren
is the number of steps, regardless of the length distributioumps (e.g., holds even for Lévy
flights). This square root growth @f?,,) was also found numerically in 2d and 3d. Considering
a drift, an abrupt shift in the scaling exponent fran? to 1 was identified [23]. Exact analytical
results were also found in 1d for a random walker with arbjtdxift [24, 25], and for continuous
time [26] and multiple [27] random walkers. In the latter eathe theoretical results agreed with
an analysis of multiple stocks from the Standard & Poors Bdex [27].

However, to apply these results to interpretatiomeatl experiments, the notion of a record —
“advance farther from the origin than at all prior time stepsequires closer examination. Why?
Because measurement ergrand noisey, are unavoidable; for instancégcan be the resolution
of the detector whiley can describe white noise from an instrument reading. Tiesrne possible
because of the “fuzziness”, as discussed, e.g., in [17,98H&nce, the question arises: how does

the presence aof or  affect the growth of ,,) and the associated record-setting pace? Related



guestions were raised in the statistics literature, engteims ofé-exceedance records [30, 31]
and in the physics literature [29], but asymptotic resulésavailable only for time series with i.i.d
entries. The question has apparently never been raised totitext of correlated entries such as
random walks. DoegR,) ~ n'/? scaling persist despite the presence @i  and for various
jump length distributions? If so, how is the amplitude of tH& growth (hereafter, “amplitude”)
affected? By way of preview, the universal growth exponént/a holds but the amplitude carries
the information about error and noise in distinct ways.

We define a “one-sided” record (positive maximum) so thatittieentry in a time series;;,
is a random walk, record-breaking event (record, for shbitexceeds all previous values in the
sequence, i.e., it; > max(zy,xs,...,x;_1). We henceforth interpret; as the distance of the
random walker from the origin at theth time step. However, because of the presence of a (fixed)
0, we definer; to be a recordd-record) only if it exceeds all previous values in the segedoy,
at least 0. Similarly, accounting for noise;; is a record-breaking event if, with the additiongf
it exceeds all previous values in the sequence. A subtlghaisin the presence of error, a record
can be defined as being larger — by the amount of the error -thiealast record, or than the last
maximum, the two being identical in the absence of errorelH@e enumerate records larger than
the previous maximum; this is more amenable to theoreteatidpment.

We focus first on the influence 6f Consider a discrete-time sequedeg = 0, 21, 2o, . .., },
representing the position of a 1d random walker startindpatariginz, = 0. The positionz,,
at stepm is a continuous stochastic variable that evolves via thekMarule, x,,, = z,,_1 + 7,
wheren,, represents the jump at step. Then,, are i.i.d., each drawn from a symmetric and
continuous jump density(n). Note that although,,’s are uncorrelated;,,’s are correlated. We
are interested in the statistics of the number of recégdsp to step:. A record occurs at step
if x,, —0 >z, forallk =0,1,2,...,(m— 1) where§ > 0 represents the measurement error. For
d = 0, the statistics of?,, are known to be universal, i.e., independent of the jumpiteri$n)
[22]; the mean record numbéR,,) up to stepn is [22]

(R,) = (2n+1) (2”) g 2 (1)

n n—oo L/2

We now examine howR,,) is affected by. Define an indicatos,,, = {1,0} with o, = 1 ifa

record occurs at stepp and0 otherwise. We calk, = 0 a record, i.e.gqg = 1. Then the number

n
m=0

of recordsR,, upto stepmis R, = > om. We average this expression over different histories.



Becauser,, is a binary{1, 0} variable, its averagé,,) is just the probability that a record occurs

at stepm. Hence,

(Rn) = Z<0m> = m(0), (2)

wherer,,(d) denotes the record rate, i.e., the probability that a recaalrs at stepn. By
definition, r, = 1, andr,,(0) = Prob[z,, —J > max [0, 21,22, ...,Tm_1]] . Thus,r,(J) is
the probability of the event that the random walker, stgri the origin, reaches,, at step
m, while staying below:,, — § at all intermediate steps betweeérandm, where one needs to
finally integrate over alk,,, > 6. To compute this probability, it is convenient to changealales
Yr = Tm — Tm_y, I.€., ObServe the sequengeg.} with respect to the last position and measure
time backwards. Them,,(9) is the probability that the new walkey,, starting at the new origin
atk = 0, makes a jump> ¢ at the first step and then subsequently upitsteps stays above
I.8.,7,(0) = Prob[y1 > 6,52 > 6,...,ym > d|yo = 0].

To computer,,(d), we note that in the first step, the walker jumpg/to= z + ¢ from yy = 0
wherez > 0 and subsequently up ton — 1) steps it stays above the levelWriting v, = 2 + 9,
we re-express,,(d) as

r(8) = / T (4 8) g (2)dz 3)

wheregq,(z) is the probability that a random walker, starting initially >, stays positive up to
n steps. This persistence probability(z) has been thoroughly studied in the literature for ran-
dom walks (see [32]) with arbitrary jump densifyn), and a general expression for its Laplace

transform is known as the Pollaczek-Spitzer formula [33, B4tates that

* -z - n o 1
/0 dze Z 0(2) = TN (@)

2o wdk} and f(k) = [ f(n) ¢'* dn is the Fourier trans-

form of the jump densityf(n). Note that whery — 0, the integral in (3) is just,,(0). Thus
m(0) = ¢ (0). From (4), one can show [32] that > _ ¢,,(0)s™ = 1/y/1 — s, independent of
the jump density. This is the celebrated Sparre Andersesreéhe[35]; when inverted it simply
givesg,,(0) = (™) 272™. When substituted in (2), it provides the universal res2f in (1).

where¢(s, A\) = exp {—

However, we are interested in> 0. To computer,,(9) for largem in (3), we need the large

m behavior ofg,,(z) for a fixedz > 0. This can be extracted by analyzing (4). One finds that the



leading order behavior of the right side of (4) neas 1 is simply[¢(1, \)/A](1 — s)~'/2. This
means thad,, (z) for largen, with fixed z, must behave like,,(z) ~ h(z)//7 n. Substituting this
on the left side of (4) and analyzing the leading behavior nea 1 shows that the left hand side
of (4) behaves a(\)(1 —s)~'/2, whereh()\) = [ h(z)e*#dz is the Laplace transform d#(z).
Comparing the left and right sides of (4), we obtain, for &g

R [Ty e, ]
qn(2) = N with A(\) _/0 h(z)e™dz = ng(m) (5)
whereg(1, \) can be read off (4) as
\ e ln (1 - f(k:))

Substituting the asymptotic behavior @f(z) from (5) in (3), we obtain, for larges, r,,() ~
U6)/vrm,U(6) = [;° dzf(z+ d)h(z).
Finally, substituting this asymptotic behaviorgf(¢) in (2) and summing for large, the mean

number of records is

n—o0

(R,) —— S(0)n'/?, 5(0) = % /0 h f(z+0)h(2)dz. 7)

This is the main exact result: for an arbitrary jump dengity), the mean record number grows
universally ag:'/? for largen (as ford = 0), while the amplitudeS(§) depends non-universally
onJ insofar as it depends explicitly of(7).

Although we have an exact expression f4p) for arbitrary f(n), its explicit evaluation for all
J is difficult. For instance, to compute it explicitly for attdry jump densityf (), we need to first
compute its Fourier transfori(k), evaluates(1, A) /A from (6), then invert the Laplace transform
(5) to obtaini(z) and finally perform the integral in (7) to determine the artygleS(0).

For the special (yet ubiquitous, e.g, free paths in kingttase of an exponential jump density
f(n) = (b/2) exp[—b|n]], itis possible to evaluate the amplitud&’). Here, f (k) = b2/(b%+ k2);
substituting this in the expression of1, \) and integrating yields(1, \) = (b + A)/A. Hence,
h(X\) = (b+ A)/X2. Inverting this Laplace transform givész) = 1 + bz. Using this explicit

form of h(z) in the expression fof(d) in (7) and integraing yields an exact expression for the



amplitude, valid for alb > 0

S(5) = % exp[—bd] . (8)

Note that a® — 0, one recovers the universal amplituzig, /.

Consider next a jump densitf(n), whose tail decays a&n) ~ exp[—|n|*] for largen, where
a > 0. Substituting this in the expression 8(0) in (7), expanding for largé and using:(0) = 1,
one can show that for largg S(J) ~ §'=*e~*". For example, for the Gaussian distribution,
f(n) = e /27" ]\/2762, one finds that

S(8) — V20 et

500 T 0

9)

Finally, consider jump densities with power law taifgy) ~ |n|~#~! for largen with x> 0.
For Lévy flights,0 < u < 2, whereas for jump densities with a finite varianpe>> 2. In this
case, rescaling = dy in the expression fof(d) in (7) one getsS(d) = (2/v/m)d [ f(6(y +
1)) h(yd) dy. For larged, the dominant contribution comes from the large argumerit(of. By
analyzingh()) in (5) for large), we find that for large;, h(z) ~ z#/2 for i < 2 andh(z) ~ = for
w > 2. Substituting this asymptotic behavior $i9) gives

S(9) PG §oHte (10)
wherea = u/2 for p < 2 anda = 1 for p > 2. Thus, in this casé(d) decays as a power law for
larged.

To test these analytical predictions we performed MontdoCamulations for the three jump
densities: (i)f(1)) = (1/2) exp[~|n|] (Exponentialp = 1); (ii) f(1) = (1/v27) exp[—n*/2]
(Gaussiang = 1), and (iii) f(n) drawn from a Lévy distribution with exponent= 1, using [36—
38]. While (i) and (ii) represent normal Fickian diffusidfii) represents non-Fickian (anomalous)
diffusion, which can arise in diverse heterogeneous dosnstiich as cells [39], cold atoms [40],
and disordered porous media [41, 42].

Our simulations are conducted with an ensemble of indepegndadom walkers (5000 parti-
cles, each taking0° steps), entering the 1d system at the origin, with step jusngths drawn
independently from a given pdf. Each particle is moved fréep o step according to its actual
(sampled) location, without includingy ¢ is added as a fixed fraction of the mean (median, for

(ii)) jump length, which is chosen as unity. At each ste garticle location is calculated; the



current distance value must exceed the last maximum by sitdda qualify as a new-record;
otherwise we ignore it. The simulations confirm thi¢> scaling for the growth of mean number
of -records, for all values of. Furthermore, the Monte Carlo simulations are comparetigo t
three analytical predictions fa¥(d) in (8), (9) and (10) in Fig. 1, showing excellent agreement.
The amplitudeS(§) decreases from its universal valti€)) = 2/,/7 asd increases, so that fewer
records are counted as the error increases. The decredég)iis steepest for the Gaussian pdf
and has a much slower decay for the Lévy pdf, in completeesgeat with theory. The slowing
down in the Lévy case is due to the anomalously skewed nafuiee pdf, with frequent small
jumps and some enormous leaps; as a consequence, potecdias set by small jumps are more
prone to being eliminated by thieerror. In contrast, the Gaussian case displays a rapidnaecli
with the increasing error, due to the compactness of thespdhat large jumps are rare and record
events larger than the error are rarer yet.

We now examine the influence of the measurement nopiséet {zq = 0,21, 29,...,2,}
represent the successive positions of the random walkethidncase, a record is registered at
stepm if z,,, + N(0,7) Az > max(0, xg, 1, . .., Tm_1), WhereN(0,) is a zero-mean Gaussian
random variable with standard deviatipnThe term\/ (0, v) Az mimics the measurement noise.
The noise is added for the purpose of record verification@t etep and is not accumulated to the
actual sequence. An analytical treatment analogous tddhatis not yet available and we resort
to numerical experiments, similar to those fowith the results shown in Fig. 2. We use the same
pdf’s (i)-(iii) as before, with mean (median, for (iii)) juplengthAz = 1.

While the scaling(R,,) ~ T(v)n'/? for largen persists, in stark contrast to th#), the
amplitudeT’(y) shown in Fig. 2 is an increasing function offor all jump densities. Thus for
~-records, the noise yields false accounting of recordsje®eng anapparent(R,) larger than
the actual one. This spuriously large rate of record foromaincreases with the magnitude of
the noise and suggests that it might be possible to inferah&ibution of noise in diffusion-type
experiments by means of record counting. One first estinfedasan experiment the pdf of the
jump lengths, which can then be employed in random walk satrans, to generate a curve for the
amplitudeT’(y) (such as seen in Fig. 2). Returning to an ensemble of expetairaeasurements
in the real system, one determinésand then reads off the corresponding valueydfom the
simulated’() curve.

The “division of labor” discovered here, i.e., the univéitgaof the scaling exponent, yet the

contrasting dependence of the amplitude on measuremene noise, suggests a rather differ-



ent perspective on the notion of instrumental precisiomgragrother things. To illustrate, consider
implications of (8). Exponentially distributed free patiie the hallmark of kinetic theory and
light scattering in random media, among others. Therefiie instrumental precisiof of any
such experiment can be inferred (in units of the mean frele pai) via (8) by means of simple
record counting.

The results presented here illustrate the subtlety andeghof record-breaking and counting,
in the presence of instrumental erioand measurement noise in systems where the underly-
ing process can be modelled by a random walk. The decoupfitigeogrowth exponentli(/2,
regardless of precision and noise) from the amplitude (whiepends on instrumental precision
and noise in a monotonic, contrasting, and pdf-dependenharais significant. While the uni-
versality of the mean record number persiéts,) ~ n'/2, the magnitude of the amplitude carries
the information about and~.

Finally, we note that the above Monte Carlo simulations wase performed on 2d and 3d
orthogonal lattices. The universality of th&’? record-setting scaling is robust for all dimensions,
and in all cases, the amplitudes displayed qualitative\delesimilar to those shown in Figs. 1
and 2. Moreover, Monte Carlo simulations accounting for-sied records (absolute distance)
demonstrated the samé’? and similar qualitative behavior for the dependence of thplaudes
ond andy.
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Amplitude

FIG. 1: One-dimensional amplitudg(d) versus measurement errdwith Gaussian (stars), exponential
(squares;b = 1) and Lévy (circles;u = 1) jump length pdf's. The curves (dotted-dashed, dashed,
solid) are the corresponding analytical results from (8),and (10) with, respectively, functional forms
Y2 oxp[—62/2], (2/m"/2) exp(—3), and0.69 6051 In the Lévy casey = 1, hencen = /2 = 1/2, and

the theoretical predictior- 6-1/2 in (10) is consistent with simulations.
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FIG. 2: AmplitudeT'() as a function of the measurement noiséor jump lengths (in one dimension)
with Gaussian (stars), exponential (squates; 1) and Lévy (circlesy, = 1) pdf’s. The curves represent
quadratic fits:; + 2.
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