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We introduce an active, all-optical method for controlling the intensity and directionality of light
scattering from single nanostructures. The method is based on the coherent interplay between linear
light scattering and second-harmonic generation. The intensity and directionality of scattered light
can be controlled by the phase delay and the relative angle between excitation beams. We discuss
the principle of this coherent control technique and perform numerical model calculations.

PACS numbers: 78.67.Bf, 42.65.ky, 78.20.Bh, 73.20.Mf

Recent advances in nanofabrication and optical char-
acterization of metallic nanostructures have paved the
way to new technology at the nanoscale [1–4]. Optical
nanoantennas emerged as promising optoelectronic
devices that enhance the interaction between light and
matter [5, 6]. For example, directional emission, one
of the most characteristic properties of antennas, has
been recently demonstrated at optical frequencies with
Yagi-Uda antennas made of gold elements [7]. In that
work, as in most other antenna designs, the geometrical
parameters and the material properties characterize the
antenna performance, which defines these antennas as
passive devices. In the work presented here we achieve
all-optical control of the antenna response by exploiting
the nonlinear optical properties of metal nanostructures.
The method makes use of second harmonic generation
(SHG) [8–15], a process where two photons create a
single photon of half the incident wavelength [16].

Because the induced charge distributions at the
second-harmonic (SH) and fundamental frequencies
have different symmetries, SHG provides access to
electromagnetic (EM) modes that cannot be excited
by linear scattering (dark modes). As illustrated in
Fig 1, we exploit the coherent interaction between the
polarization currents generated by linear scattering and
those induced by SHG and demonstrate that the com-
bined charge distribution can be markedly asymmetric,
thereby opening up the possibility of controlling the
directionality of radiation patterns. Furthermore, it
is possible to suppress or enhance certain EM modes,
which provides a means to actively control the scattered
intensity.

To understand the principle of this coherent control
technique we perform a theoretical model calculation
based on a combination of the Finite-Difference Time-
Domain (FDTD) method [17] and the volume integral
equation [18]. While FDTD is used to compute induced
polarization currents and optical near-fields, the volume
integral equation is employed to propagate the near-fields
into the far-field. In FDTD the linear response of gold is
described by a Drude-Lorentz model [19], and to calcu-

late the response at the SH frequency, we follow a pertur-
bative approach, for which the intensity of the exciting
field is not decreased due to SHG (non-depletion regime).
We first perform a linear calculation to determine the EM
field at fundamental wavelength, E(2λ). The SH fields are
generated simultaneously. The update equations are the
same as in the linear case, with the exception that the
source is defined by the second-order polarization vec-
tor, P

(λ), instead of the incident field. In centrosym-
metric materials like polycrystalline metals, the induced
polarization at the SH frequency has multiple origins:
i) a dipolar contribution, which is nonzero at material
boundaries, and ii) a quadrupolar contribution, which
can be enhanced by surface roughness and nanostructur-
ing [20, 21]. Both contributions are of the same order of
magnitude, originating from a surface contribution that
can be expressed as
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where n and t stand for normal and tangential to the
surface respectively, and χijk are the non-vanishing
components of the second-order susceptibility ten-
sor. For gold at a wavelength of 1064nm we choose

FIG. 1: Principle of the coherent control method. The scat-
tered intensity and direction of a signal beam is influenced by
a control beam of twice the wavelength.
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3.27 10−15 cm/V [22]. Pure bulk nonlinearities are
negligible compared to surface nonlinearities [13, 22].
Furthermore, the inclusion of bulk contributions would
not lead to the excitation of new modes and therefore
not affect our symmetry considerations. Our code has
been tested against analytical results and proven to yield
correct results (not shown) [23].

To simplify our calculations we chose a cylindrical
symmetry (infinite gold nanowire) with p-polarized
fields. The problem can then be treated by a two-
dimensional FDTD code. This choice does not affect the
generality of the coherent control method discussed in
this study. The gold nanowire has a radius of 50nm and
is surrounded by air. It is excited by a low-intensity field
of wavelength λ = 532nm (the signal) and by a second
high-intensity field of wavelength 2λ (the control). We
are interested in the properties of light radiated at λ.
When the nanowire is excited by the signal beam only,
the optical response is characterized by an electric dipole
pointing along the x-axis. The left panel of Fig. 2(a)
provides a sketch of the near-field charge distribution.
It has an odd symmetry, with two poles defining the
electric field lines. The right panel of Fig. 2(a) shows the
corresponding radiation pattern. It features two lobes
pointing forwards (θ = 90◦) and backwards (θ = 270◦).
A different situation is encountered if the nanowire is
excited by SHG, that is, by the control beam (Fig. 2(b)).
The charge distribution now has even parity (left panel)
with radiation lobes that are directed towards the
same side (right panel). As discussed before, SHG
in metal nanostructures has different origins and our
model takes both nonlinear dipole and quadrupole terms
into account, that is, Fig. 2(b) is the result of both terms.

Next, we excite the gold nanorod by both the signal
field and the control field (Fig. 2(c)). The interference
between the two terms gives rise to an asymmetric
polarization charge distribution (left panel) and an
asymmetric radiation pattern (right panel). For a
pronounced effect, the contributions from signal and
control must be of similar magnitude. For the gold
nanorod considered here we adjust the excitation fields
of signal and control as Econtrol = αEsignal, where
α ∼ 105 exp (iδπ). The results shown in Fig. 2(c) have
been calculated for zero phase delay (δ = 0) and it is
evident that the charge distribution and the radiation
pattern will depend on δ. The asymmetry in the
radiation pattern shown in Fig. 2(c) is a consequence of
retardation, that is, the finite nanowire diameter gives
rise to different multipole orders, excited both by linear
(signal beam) and nonlinear (control beam) interactions.
Note that the excitation fields Esignal and Econtrol have
different frequencies and that their phases need to be
locked.
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FIG. 2: Charge distributions (left) and radiation patterns
(right) of a gold nanowire excited under different conditions.
(a) Linear scattering of a signal beam of wavelength λ. (b)
Second-harmonic generation with a control beam of wave-
length 2λ. (c) Excitation by both signal and control beams.
The linearly scattered signal field and the second-harmonic
control field interfere and give rise to an asymmetric charge
and radiation pattern.

We now investigate the influence of δ on the direction-
ality and the intensity of scattered light at wavelength
λ. Figure 3(a) shows the radiation patterns for three
different phase delays. From these far-field maps we
calculate the directionality, defined as the ratio of
maximum intensity emitted to the left to maximum
intensity emitted to the right. As shown in Fig. 3(b),
the directionality can be tuned over four orders of
magnitude by varying the phase delay δ.

Figure 3(c) shows the radiation efficiency as a function
of δ, defined as the total scattered power in presence
of both signal and control beams normalized with the
scattered power in absence of the control plus the scat-
tered power in absence of the signal. The curve indicates
that the radiation efficiency is not affected by the phase
delay. In other words, δ influences the directionality but
leaves the total area covered by the radiation patterns
unaffected. The ability to steer the radiation with a
dynamic range of four orders of magnitude without
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FIG. 3: Control of radiation efficiency and directionality by
phase delay δ. Signal and control beams are collinear. (a)
Radiation patterns for three different δ. (b) Directionality as
a function of δ. (c) Normalized total scattered power as a
function of δ. See main text for definitions. The arrows in
the inset represent the induced linear dipole (LD), nonlinear
dipole (NLD), and nonlinear quadrupole (NLQ).

introducing any losses is unique. Similar results are
traditionally achieved with phased-array antennas, or
with multi-element antennas (e.g. Yagi-Uda) but with
a considerably larger footprint and complexity. Note
that the nanowire considered here is not an optimized
geometry and that much stronger effects can be achieved
with suitably designed antennas [24].

Interestingly, we can find excitation conditions for
which the total scattered power can be suppressed
or enhanced. To demonstrate such a situation we
excite the antenna with orthogonal beams, that is,
control and signal beams are incident from angles that
differ by 90 degrees. As shown in Fig. 4(a,b), this
configuration has almost no effect on the directionality.
The radiation pattern remains symmetric for all phase
delays δ. However, the area of the radiation patterns
and hence the radiation efficiency changes drastically
(Fig. 4(a)). While the large area of the “fly”-like pattern
at δ = 0.5 rapidly reduces when increasing the phase
delay to δ = 1.5, the directionality remains unaltered. In
contrast, the radiation efficiency oscillates sinusoidally,
reaching values either larger or smaller than one (see
Fig. 4(c)). Thus, depending on the phase delay and the
angles of incidence we are able to suppress or enhance
light scattering. The reason why light scattering can
be suppressed is that an induced charge density can
be generated having a negligible dipole component,
that is, the charge distribution corresponds to a dark

mode [25–29]. Note that the excitation of a dark-mode is
made possible by the symmetry-breaking nature of SHG
and cannot be accomplished by linear light scattering.

To better understand why in the collinear case the
phase delay δ only affects the directionality (Fig. 3)
and in the orthogonal case it only affects the radiation
efficiency (Fig. 4) we perform calculations as a function
of the angle φ between the incident beams. For this
purpose we keep the control beam angle fixed (normal
incidence) and adjust the phase delay to δ = 0.5. The
calculated radiation efficiency, shown in Fig. 5, exhibits
a complicated behavior with peaks and dips, which arise
from the interactions between the different χ(2) contribu-
tions, namely the linear and nonlinear dipole interactions
and the quadrupole interaction. To illustrate the contri-
bution of the quadrupole term we implemented a simple
model of two interacting dipoles (one of them fixed, the
other being rotated with angle φ). This model accounts
for the interaction between the linear dipole mode and
the nonlinear dipole mode [30, 31]. The result is shown
as the red curve in Fig. 5. Evidently, constructive and
destructive dipole-dipole interactions cannot explain our
results, the disagreement being most pronounced for
angles ϕ = 135◦ and ϕ = 315◦ (see blue areas in Fig. 5).
While for ϕ = 135◦ the dipole-dipole response and
the full calculation display similar radiation patterns,
the corresponding radiation efficiencies are markedly
different: the dipole-dipole model predicts attenuation
whereas the full calculation yields an enhancement
of the radiation efficiency. For ϕ = 315◦ we find the
opposite scenario. Thus, the coherent control mechanism
exploited in this work depends on the specific symmetry
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FIG. 4: Similar study to the one shown in Fig. 3, but with
signal and control beams aligned orthogonally.
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FIG. 5: Radiation efficiency as a function of the signal beam
incidence angle, δ=0.5. The solid red line represents the cal-
culated far-field efficiency of two interacting electric dipoles
(See text for details).

of the second-order nonlinear susceptibility and on the
relative magnitude of its components. In Fig. 3, the
control beam breaks the charge symmetry induced by
the signal beam, but the induced modes (linear dipole,
nonlinear dipole, and quadrupole) remain orthogonal.
This is the reason why the radiation efficiency is not
affected by the phase delay δ. For the situation in Fig. 4,
on the other hand, the linear dipole and the nonlinear
dipole are not orthogonal, which means that the total
dipole moment can be enhanced or suppressed, thereby
affecting the radiation efficiency. None of the results
involving quadrupole fields are achievable with a purely
linear scattering approach [34, 35]. A true dark mode
cannot be excited by linear excitation, however it can
be excited through SHG [33]. In practice, retardation
effects make it possible to excite quadrupole modes even
with linear excitation, especially for larger particle sizes.
However, SHG provides means for much more efficient
excitation of dark modes [33].

In conclusion, we introduced a method for coherent
control of light scattering by nanoparticles. A control
beam “writes” a polarization charge distribution into the
scattering object via SHG, whereas a signal beam then
interacts with this charge distribution. The coherent
interaction between SHG from the control beam and
linear scattering from the signal beam gives rise to
directional radiation. The directionality and radiation
efficiency can be tuned by varying the phase delay δ

between control and signal beams. The theoretical
results presented in this work can be experimentally
tested using standard pump-probe spectroscopy with a
fixed phase relation between pump and probe pulses.
Experimentally, a homogeneous environment can be
achieved by depositing nanoparticles on a dielectric

substrate and using index matching liquids for coverage.
The concept developed here is neither limited to simple
geometries nor metallic materials. The work opens
the door for engineering the surface charge density of
nanostructures, which can be employed in spectroscopy
when non-dipolar transitions take place [32], and for
sensing using localized surface plasmon resonances [33].
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