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Recent measurements of the doping dependence of the London penetration depth λ(x) at low T in
clean samples of isovalent BaFe2(As1−xPx)2 at T ≪ Tc [Hashimoto et al., Science 336, 1554 (2012)]
revealed a peak in λ(x) near optimal doping x = 0.3. The observation of the peak at T ≪ Tc,
points to the existence of the quantum critical point (QCP) beneath the superconducting dome. We
associate such a QCP with the onset of a spin-density-wave order and show that the renormalization
of λ(x) by critical magnetic fluctuations, gives rise to the observed feature. We argue that the case of
pnictides is conceptually different from a one-component Galilean invariant Fermi liquid, for which
correlation effects do not cause the renormalization of the London penetration depth at T = 0.

PACS numbers: 74.70.Xa, 74.40.Kb, 74.25.Bt, 74.25.Dw

Introduction.– Properties of iron–based superconduc-
tors (FeSCs) have been at the forefront of research activ-
ities in correlated electron community over the last few
years [1–4]. These materials have multiple Fermi pockets
with electron-like and hole-like dispersion of carriers. It is
well established that superconductivity in FeSCs emerges
in close proximity to a spin-density-wave (SDW) order,
and superconducting (SC) critical temperature Tc has
dome-shaped dependence on doping, with Tc maximum
near the onset of SDW order [5–8].

Several groups [9] put forward the scenario that super-
conductivity in FeSCs has s+− symmetry and emerges
because SDW fluctuations increase inter-pocket interac-
tion, which is attractive for s+− gap symmetry, to a level
when it overcomes intra-pocket repulsion. Likewise, SC
fluctuations tend to increase the tendency towards SDW.

Once the system develops long-range order, the sit-
uation changes because SDW and SC orders compete,
and the order which sets first tends to block the de-
velopment of the other. According to theory, such
competition may give rise to a homogeneous coexis-
tence of SDW and SC orders in some range of dop-
ings [12–14]. A homogeneous coexistence of SDW
and SC orders has been detected in 122 materials –
electron-doped Ba(Fe1−xCox)2As2 [7, 8, 15–20] and hole-
doped Ba1−xKxFe2As2 [21–23]. On the other hand,
for EuFe2−xCoxAs2 Mössbauer spectroscopy measure-
ments [24] were interpreted in favor of phase separation,
when SC has a filamentary character and is concentrated
in non-magnetic regions. In the third class of 122 ma-
terials – an isovalent BaFe2(As1−xPx)2, the coexistence
between SDW and SC order has not been yet probed ex-
perimentally, but the odds are that the two orders do
coexists because the phase diagram of BaFe2(As1−xPx)2
is quite similar to that for Ba(Fe1−xCox)2As2 [25].

The coexistence implies that the SDW transition line
extends into superconducting phase. If this line reaches

T = 0, the system develops a magnetic quantum-critical
point (QCP) beneath the superconducting dome [11], see
Fig. 1. A magnetic QCP without superconductivity has
been analyzed in great detail [27, 28], and it is known
that quantum fluctuations near this point give rise to
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FIG. 1: [Color online] Lower panel: a theoretical phase dia-
gram of 122-type iron-based superconductors in temperature
vs doping plane. Critical temperatures TN and Tc indicate
transitions into pure SDW and SC phases respectively. A
QCP lies beneath of the SC dome and separates pure SC and
coexistence SC+SDW phases. Re-entrant behavior of TN un-
der the SC dome has been detected in Co-doped 122 materi-
als [10] but well may be non-universal [11–14]. Upper panel:
the theoretical behavior of the penetration depth λ at T = 0.
In the mean-field approximation (dashed line), λ diverges at
the edges of the superconducting dome, flat inside pure SC
phase and increases monotonically as system moves towards
the pure SDW phase. Beyond mean-field, magnetic fluctua-
tions give rise to a peak in λ at the onset of the SDW order
(solid line). The peak in λ has been observed in Ref. [26].
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non-Fermi liquid (NFL) behavior and to singularities in
various electronic characteristics. An SDW instability
inside the d-wave SC state has been analyzed in [29] and
was shown to give rise to NFL behavior of nodal fermions.

The observation of coexistence brings about the new
issue of whether there are electronic singularities at a
magnetic QCP which develops in the presence of an s+−

SC order. Of particular interest are the singularities
in quantities such as the penetration depth λ(x), which
measures electronic response averaged over the whole FS.
Early experiments [30] on Ba(Fe1−xCox)2As2 found no
special features in λ(x) at the onset of SDW order, but re-
cent measurements in BaFe2(As1−xPx)2 (Ref. 26) found
a peak in λ(x) at the smallest T ≪ Tc at around optimal
doping (see inset of Fig. 1). The authors of Ref. [26] spec-
ulated that the peak likely indicates that there is a QCP
beneath a SC dome and argued that the peak in λ(x) is
a generic feature of 122 Fe-pnictides, but it is more diffi-
cult to detect it in Ba(Fe1−xCox)As2 because of greater
degree of electronic disorder caused by Co doping. An-
other potential reason why the peak has been observed
only in BaFe2(As1−xPx)2 is that this material possess
gap nodes [31] what generally leads to stronger effects
due to quantum fluctuations.
In this communication, we analyze the behavior of λ(x)

under the assumption that the QCP is associated with
the development of SDW order beneath a superconduct-
ing dome. A preemptive nematic order may also play a
role [32], but we will not dwell into this.

London penetration depth near QCP. – In general, the
peak in λ(x) at a SDW QCP can emerge by three reasons:
(i) a non-monotonic behavior of λ near a QCP already
within the mean-field theory (like the peak in the spe-
cific heat jump at Tc at the onset of coexistence with
SDW [33]); (ii) critical fluctuations at the onset of SDW,
not specific to the form of the gap; (iii) critical fluctua-
tions specific to the presence of the gap nodes. Besides,
λ can either diverge at a QCP, or get enhanced but stay
finite. It was found recently [34] that, at the mean field
level, the variation of λ is smooth and cannot explain
sharp feature observed in Ref. [26]. Here we investigate
the effects of critical magnetic fluctuations. We find that
fluctuations associated with SDW QCP beneath a SC
dome give rise to the enhancement of the effective mass
m∗. The mass does not diverge because SC order cuts
infrared singularities, but neverthelessm∗/m at the QCP
is noticeably enhanced. We argue that the enhancement
of m∗ gives rise to a sharp peak in λ(x) at the onset of
coexistence with SDW. We also find that the presence of
the nodes in the gap is not sufficient to transform a peak
into a divergence because the dominant contribution to
m∗ comes from the region away from the nodes.

London penetration depth in a type-II supercon-
ductor with cubic symmetry is expressed via zero-
momentum component of the electromagnetic response
tensor Qij(k) = (δij − kikj/k

2)Q(k), which relates vec-

tor potential A and the current density j: ji(k) =
−Qij(k)Aj(k). The temperature and doping dependent
penetration depth is given by λ−2(T, x) = (4π/c)Q(T, x),
where c is the velocity of light. The kernel Q(T, x)
is related to current-current correlation function in the
limit of zero frequency and vanishing momentum and
is expressed via the superfluid density ns(T, x) as Q =
e2ns/mc, where m and e are the mass and the charge of
an electron. Then λ2 = mc2/(4πe2ns). In Galilean in-
variant, one-component fermionic system superfluid den-
sity at T = 0 is equal to the total density of fermions
n(x). In this situation λ(T = 0, x) does not depend on
Fermi liquid corrections and remains the same as in a
Fermi gas [35, 36]. Diagrammatically, superfluid density
is given by the sum of two bubble diagrams made out of
normal and anomalous Green’s function, and the inde-
pendence of ns(T = 0, x) on the electron-electron inter-
action is the result of the cancelation between self-energy
and vertex corrections to these diagrams. At T > 0 the
T−dependent part of ns does depend on Fermi liquid
parameters [36].
We find, however, that in iron–pnictides the situation

is different because these systems have multiple Fermi
pockets, and s+− pairing originates from inter-pocket in-
teraction. The interplay between self-energy and vertex
corrections then depends on the orientation of Fermi ve-
locities and the values of superconducting order parame-
ters at different FSs. We find that self-energy and vertex
corrections generally do not cancel, and the penetration
depth is roughly proportional to m∗/m.
We followed earlier works [9] and assumed that the

most relevant interaction in Fe-pnictides is between hole
and electron pockets, separated by Q = (π, π) in the
folded Brillouin zone, and that the gap has s+− symme-
try and changes sign between electron and hole pockets.
We calculated the leading interaction correction to λ(x)
in the one-loop approximation. This perturbative anal-
ysis is justified because renormalized λ(x) does not di-
verge even at an SDW QCP. There are 16 diagrams with
one-loop corrections to current-current correlator, half of
them are self-energy and half are vertex corrections. We
evaluated the diagrams and found that self-energy and
vertex corrections are of the same order, and both de-
crease the superfluid density and increase the penetration
depth [37]. To be brief, below we analyze how λ(x) is af-
fected by inserting fermionic self-energy into current cor-
relation function. A straightforward calculation yields,
at one-loop order

λ2(T = 0, x) = λ2BCS [1 + β(x)] , (1)

where

β =
〈

∑

j

(1− Zj(kF ))
〉

φ
=

〈

lim
ω→0

∂iωm
Σj(kF , ωm)

〉

φ
.

(2)
Here j labels Fermi pockets, Σ is a diagonal (normal)
self-energy, which generally depends on the location of
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kF on the corresponding Fermi surface, and 〈. . .〉φ =
∫ 2π

0
. . . dφ/2π. In a situation when the dependence of

Σj(k, ωm) on k− kF can be neglected, the quasiparticle
residue is related to mass renormalization as Zj(kF ) =
m/m∗

j(kF ).
A similar expression for λ has been earlier obtained

for heavy-fermion superconductor UBe13 [38], which is
a two-component system of conduction d− electrons and
localized f -electrons, of which only the first carry the cur-
rent. It is tempting to extend the one-loop result (1) to
λ−2 ∝ ∑

jm/m
∗
j , but we caution that non-cancellation

of one-loop self-energy and vertex corrections to the cur-
rent correlator does not necessary imply that vertex cor-
rections can be simply neglected. An example of more
complex behavior beyond one-loop order has been re-
cently considered in [39].
Evaluation of the fermionic self-energy.– We consider

the minimal three-band model of two elliptical electron
Fermi surfaces and one circular hole Fermi surface. The
basic Hamiltonian includes the free fermion part H0 and
pair fermion interactions in superconducting H∆ and
magnetic Hσ channels [37]. These interaction are de-
scribed by the local coupling constants gsc and gsdw re-
spectively. The phase diagram of the model has been
obtained before [14]. We focus on the region where at
T = 0 the system has a long-range SC order and is about
to develop an SDW order. Renormalization of mass on
all Fermi surfaces is of the same order, and for brevity
we show the calculations of m∗/m for just one pocket.
Potentially singular self-energy comes from the ex-

change of near-critical SDW fluctuations. In the normal
state, these fluctuations are overdamped and are slow
compared to electrons. In a SC state, the dynamical ex-
ponent changes from z = 2 to z = 1 because fermions
which contribute to bosonic dynamics become massive
particle-like excitations. Such systems have been earlier
discussed in the context of cuprates [27] and we follow the
same approach in deriving the expressions for the self-
energy and spin polarization operator in the SC state in
our case.
The one-loop self-energy due to spin-fluctuation ex-

change is a convolution of spin-fluctuation and fermionic
propagators, both taken in the superconducting state:

Σj(k, ωn) = 3T
∑

Ωm

∫

dq

4π2
L(q,Ωm)Gj(k − q, ωn − Ωm)

(3)
where ωm = 2πT (n+1/2) and Ωm = 2πmT are fermionic
and bosonic Matsubara frequencies respectively. The
normal and anomalous components of the Green’s func-
tion in the SC are

Gj(k, ωn) =
−iωn − ξj

ξ2j + ω2
n +∆2

j

, Fj(k, ωn) =
−∆j

ξ2j + ω2
n +∆2

j

(4)
where ξj = ξj(k) = vj,F (k−kF ), and the energy gap ∆j

is equal to ∆h on the hole Fermi surfaces and ∆e(φ) =

−∆e(1±α cos 2φ) on the two electrons Fermi surfaces (we
choose ∆h,∆e > 0). The gaps on electron pockets have
nodes when α > 1. We emphasize that the Sc gap can be
treated as doing-independent only in the paramagnetic
state. Once SDW order sets in, the value of the gap
changes [12–14].

The spin-fluctuation propagator is given by

L(q,Ωm) =
1

g−1
sdw

+Π(q,Ωm)
, (5)

where the polarization operator Π(q,Ωm) is (see [37] for
details)

Π=NfT
∑

ωn

∫

dξ

〈

[iω+ − ξ+][iω− + ξ−] + ∆h∆e

[ξ2+ + ω2
+ +∆2

h][ξ
2
− + ω2

− +∆2
e]

〉

φ

.

(6)
Here ω± = ωn ± Ωm/2, ξ± = ξ ± δ/2, and we replaced
the integration over momentum k by

∫

. . . d2k/4π2 =
Nf

∫

. . . dξdφ/(2π), where Nf is the density of states.
Parameter δ = δφ + δq accounts for the doping-induced
modification of the Fermi surfaces. The term δφ =
δ0 + δ2 cos 2φ describes changes in the Fermi surfaces
radii and overall shape (ellipticity), while the term δq =
vF q cos(φ − ψ) describes the relative shift in the centers
of Fermi surfaces, where φ and ψ are the directions of kF
and q. The magnetic SDW critical point is determined in
terms of doping parameters δ0 and δ2 from the condition
Γ = 0, where Γ = (g−1

sdw
+Π(0, 0))N−1

f .

We first consider the case of equal gaps on both Fermi
surfaces (α = 0, ∆h = ∆e = ∆) and then discuss how the
results are modified in the case when the gaps on electron
pockets have nodes. Earlier calculations show [13] that
there is a broad parameter range 0.8 . δ2/δ0 . 4.7 for
which SDW order emerges gradually, and its appearance
does not destroy SC order, i.e. SDW and SC orders co-
exist over some range of dopings. Since we are interested
in T = 0 limit, it is sufficient to evaluate the propagator
of magnetic fluctuations Eq. (5) only at small frequencies
and momenta. A straightforward expansion leads to [37]

L(q,Ωm) =
1

Nf

1

ηv2F q
2 + χΩ2

m + Γ
, (7)

where

Γ = ln

(

Tc,0
TN,0

)

−
〈 |δφ| arccosh

√

1 + δ2φ/∆
2

√

δ2φ +∆2

〉

φ

, (8a)

χ(∆, δ) =
1

8

〈

1

∆2 + δ2φ
+

∆2 arccosh
(√

1 + δ2φ/∆
2

)

|δφ|(∆2 + δ2φ)
3/2

〉

φ

,

(8b)



4

and

η(∆, δ, ψ) =
1

8

〈

cos2(φ − ψ)

[

2∆2 − δ2φ
(∆2 + δ2φ)

2

−3∆2|δφ|
arccosh

(√

1 + δ2φ/∆
2

)

(∆2 + δ2φ)
5/2





〉

φ

. (8c)

In Eq. (8a) we absorbed coupling constants gsdw (gsc)
into the corresponding critical temperatures TN,0 (Tc,0)
for the transitions into a pure SDW (SC) state.
Without superconductivity, η < 0, and a magnetic

transition at T = 0 is into an incommensurate phase [14,
32]. In the presence of SC order, the commensurate (π, π)
magnetic order is stabilized (η > 0), provided that rel-
evant δ2φ ≤ ∆2, which we assume to hold. By order of

magnitude, χ ∼ η ∼ 1/∆2.
Substituting Eqs. (4) and (7) into Eq. (2) and integrat-

ing explicitly over the momentum transfer q (see Supple-
mentary material for details), we obtain the fermionic
residue for a direction φ along the Fermi surface in
the form Z(φ) = 1 − I(φ)F . Here I(φ) accounts for
the (non-singular) angular dependence and is normalized
such that (φh) = 1, where φh is the direction of a hot
spot (a kF point for which kF + Q is also on another
Fermi surface, see Fig. 2(a), and F accounts for the de-
pendence on the distance to hot spot, measured by Γ,
and on the system parameters δ0 and δ2. In explicit
form F = 〈F (κ(ψ)), γ(ψ))〉ψ , where κ(ψ) = χ/η(ψ),
γ = Γ/η(ψ)∆2, and

F (κ, γ) =
3

8π2ηNfv2F∆

∫ +∞

−∞

κz2dz

(1− κ)z2 + 1− γ

×





1

κz2 + γ
−

arccosh
(√

z2+1

κz2+γ

)

√
z2 + 1

√

(1− κ)z2 + 1− γ



 . (9)

Using Eqs. (1) and (2) we find

β = λ2/λ2BCS − 1 = F 〈I(φ)〉 (10)

Because angular integrals over φ in I(φ) and over ψ in
F are non-singular, the dependence of β on the distance
to the critical point and on system parameters can be
approximated by β ∼ F (κ, γ). It is apparent from the
integral in (9) that F (κ, γ) is finite even in the limit γ →
0, which implies that the penetration depth remains finite
at the SDW QCP. Still, F (κ, γ) is peaked at the SDW
QCP (when γ = 0), and decreases as F (κ, γ) ∝ ln γ/

√
γ

at γ ≫ 1. We illustrate this behavior in Fig. 2. Because
δλ ∼ F (κ, γ), the penetration depth is also peaked at
the QCP. This behavior is in agreement with the data
for isovalent BaFe2(As1−xPx)2 [26].
By order of magnitude F (κ, 0) = O(1), hence β =

O(1). The enhancement of λ2 = λ2BCS(1 + β) at the
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FIG. 2: [Color online] Scaling function F (κ, γ) which ac-
counts for the interaction correction to the London penetra-
tion depth λ2/λ2

BCS − 1 ∝ F (κ, γ) is plotted versus γ which
measures the distance to the quantum critical point for three
different combinations of the system parameters encoded by
κ = 0.1, 0.25, 0.5. (see text). Inserts – (a) hole (circular) and
electron (elliptical) Fermi surfaces, φh marks the location of
a hot spot; (b) the dependence of F (κ, 0), normalized to the
pre-factor in Eq. 9, on κ.

SDW QCP is larger if magnetic order remains commen-
surate (π, π) even in the absence of superconductivity. In
this situation, δ0 and δ2 are not restricted to be smaller
than ∆, and, if they are larger, β is enhanced by (δ/∆)2.
We caution, however, that once β becomes large, the
one-loop approximation is no longer applicable, and, in
particular, vertex corrections has been analyzed in more
detail [39].

We next computed F (κ, γ) for the case when SC gap
has nodes on electron pockets. We found that, roughly,
the angular dependence of the gap renormalizes κ down-
wards. This, however, does not change λ qualitatively –
at a magnetic QCP F (κ, 0) increases when κ decreases,
but still remains finite. We illustrate this in Fig. 2(b).
The reasoning is simple: the nodes of s+− gap are located
at accidental kF points which generally differ from hot
spots. In the special case when the gap nodes coincide
with hot spots, Z at a hot spot diverges logarithmically
at a SDW QCP, but momentum integral of Z(φ) is still
finite, hence λ remains finite even in this case.

Conclusions.– In this paper we considered the behav-
ior of the penetration depth λ(x) in a clean Fe-based s+−

superconductor at the onset of a commensurate SDW
order inside the SC phase at T = 0. We found that
the penetration depth remains finite but has a peak at
the onset of SDW order. The magnitude of the peak is
larger when s+− gap has accidental nodes, but still re-
mains finite at the onset of SDW order. Our results agree
with the measurements[26] of the penetration depth in
the isovalent BaFe2(As1−xPx)2 inside the superconduct-
ing phase. Experiment [26] shows that that λ has a peak
at roughly the same doping where the Neel temperature
TN intersects with Tc. Our results supports the scenario
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that SDW order in BaFe2(As1−xPx)2 persists into SC
phase, as it happens in other Fe-based superconductors,
and that the peak in the penetration depth occurs at
a magnetic quantum-critical point inside the SC dome.
Whether SDW and SC orders co-exist microscopically or
phase separate, remains to be seen.
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