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Controlling the properties of materials by driving them out of equilibrium is an exciting prospect
that has only recently begun to be explored. In this paper we give a striking theoretical example
of such materials design: a tunable gap in monolayer graphene is generated by exciting a particular
optical phonon. We show that the system reaches a steady state whose transport properties are the
same as if the system had a static electronic gap, controllable by the driving amplitude. Moreover,
the steady state displays topological phenomena: there are chiral edge currents, which circulate a
fractional charge e/2 per rotation cycle, with frequency set by the optical phonon frequency.

Non-equilibrium quantum systems constitute a natu-
ral frontier in physics that is only beginning to be probed
by theory and experiment. Non-equilibrium methods can
be used to study [1] and control [2, 3] the properties of
condensed matter systems. Particularly exciting is the
possibility of engineering the properties of novel materi-
als, like graphene, by driving them out of equilibrium,
paving the way for applications to devices. Graphene’s
gaplessness poses a critical challenge to such applications,
as the development of graphene-based semiconductors is
predicated on the ability to induce a gap.

In this Letter we present a theoretical study in
graphene of this non-equilibrium approach to materi-
als design. We demonstrate the possibility of inducing
a gap in monolayer graphene by the excitation of op-
tical phonon modes. The gap is controlled by a time-
dependent Kekulé-pattern bond density wave, which ap-
pears in the effective field theory as a complex-valued
order parameter ∆ that rotates with the frequency Ω of
the driven phonon mode. The time-dependence in this
order parameter is completely removable by an axial (val-
ley) gauge transformation, which can be viewed as a kind
of “boost” to a co-moving “reference frame.” The gauge
transformation has no effect on the coupling of the system
to a heat bath, thereby guaranteeing thermal equilibra-
tion in the new frame, and leaves the fermion currents
invariant. This implies that the electric response of the
system is equivalent to that of one with a static gap; all
non-equilibrium aspects of the problem are removed and
the system can be studied as if it were at equilibrium.

The topological consequences of the Kekulé gap have
been studied in the static case, revealing that fraction-
ally charged states can emerge that are bound to vor-
tices in the order parameter ∆ [4]. In the driven case, we
show that further topological phenomena arise: the sys-
tem supports chiral edge currents of magnitude Jedge =
eΩ/4π, while the current in the bulk vanishes. These re-

sults suggest the possibility that driven graphene could
be used as a tunable semiconductor with nontrivial topo-
logical properties.

Let us consider spinless electrons hopping on a hon-
eycomb lattice Λ according to the time-dependent tight-
binding Hamiltonian

H = −
∑
r∈ΛA

3∑
j=1

[t+ δtr,j(τ)] a†rbr+sj + h.c. , (1)

where τ is time and a†r and b†r+sj are fermionic creation
operators at sites r ∈ ΛA and r+ sj ∈ ΛB , with ΛA and
ΛB the two triangular sublattices forming the hexago-
nal lattice Λ. The vectors sj (j = 1, 2, 3) connect a site
r ∈ ΛA to its three nearest neighbors at r + sj ∈ ΛB
located a distance |sj | = d away. The uniform hopping
amplitudes t are modulated by time- and site-dependent
perturbations δtr,j(τ). In the absence of such perturba-
tions (δtr,j(τ) = 0), the Hamiltonian (1) can be diago-
nalized in momentum space, and the single particle spec-
trum has two Dirac points at k = K± = ± 4π

3
√

3d
(1, 0).

We shall now consider the perturbations δtr,j(τ) that
result from the excitation of the highest-energy optical
phonon modes at wavevectorsK± with frequency Ω. The
atomic displacements from the lattice sites rA,B ∈ ΛA,B
are

uA,BK±
(rA,B , τ) = c± e

irA,B ·K±e−iΩτ uA,B± + c.c. (2)

The coefficients c± are the amplitudes of the excited
waves. The normal mode vectors uA,B± for the highest-
energy optical modes with frequency Ω at wavevectors
K± can be determined from a classical analysis of the
lattice displacements [5, 6] and are given by

uA± =
1

2

(
1
∓i

)
and uB± =

1

2

(
1
±i

)
. (3)
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To determine the form of the hopping modulations
δtr,j(τ) resulting from the phonons, we consider the
changes in bond lengths due to the atomic displacements
(2) when either the mode at K+ or K− is excited. For
small displacements, the change in the length dr,j(τ) of
the bond connecting site r and r + sj is [7]

δd±r,j(τ)

d
≈ −sj

d
·
[
uAK±

(r, τ)

d
−
uBK±

(r + sj , τ)

d

]
(4)

Substituting (2) and (3) into (4) and using eiK±·sj =

e±i
2π
3 (j−1), one obtains

δd±r,j(τ)

d
= ±i c

∗
±
d
eiK±·sje±iG·re±iΩτ + c.c. , (5)

where the vector G = K+ −K− = 2K+ connects the
two Dirac points. The modulation in the hopping am-
plitude is related to the change in bond length through
δtr,j(τ)/t = α δd±r,j(τ)/d, where α ≈ 3.7 is the di-
mensionless electron-phonon coupling [7]. The resulting
δtr,j(τ) can be written as

δtr,j(τ) =
1

3
∆(τ) eiK+·sjeiG·r + c.c. , (6)

where

∆(τ) =

{
i 3αt

c∗+
d e+iΩτ for the K+ mode

i 3αt c−d e−iΩτ for the K− mode.
(7)

The hopping modulations (6) have the form of a Kekulé
distortion with an order parameter ∆(τ) [4] that is time-
dependent. Therefore, exciting either the K+ or the
K− mode independently yields a Kekulé order param-
eter that rotates in time with frequency Ω in opposite
directions for the two modes.

Without loss of generality, we henceforth consider the
case where the K+ mode is excited, and write ∆(τ) =
|∆| eiφ(τ), where φ(τ) = Ωτ + ϕ. All the results for
the K− mode are obtained from those below by taking
Ω→ −Ω.

We study the consequences of this rotating order pa-
rameter in the context of the effective Dirac field the-
ory of the system, which is valid in the limit where the
fermions have relativistic (hyperbolic) dispersion. In or-
der to ensure the validity of this approximation we re-
quire |∆| /t � 1 and Ω/t � 1, where the uniform hop-
ping amplitude t sets the kinetic energy scale of the prob-
lem. In this regime the Hamiltonian (1) corresponds,
to first order in a gradient expansion, to the Dirac La-
grangian density [4, 8]

L = Ψ̄
[
γµ(i∂µ + γ5A5µ)− |∆| e−iγ5φ(τ)

]
Ψ , (8)

with µ = 0, 1, 2, Ψ̄ = Ψ†γ0 and 4× 4 Dirac matrices

γ0 ≡
(

0 1

1 0

)
, γi ≡

(
0 −σi
σi 0

)
,

γ5 ≡ iγ0γ1γ2γ3 =

(
1 0
0 −1

)
,

where 1 is the 2×2 unit matrix and σi are the three Pauli
matrices. The Dirac spinor Ψ†p = (b†p,+ a†p,+ a†p,− b†p,−)

collects the creation operators a†p,± and b†p,± for the ±
species on sublattices A and B, respectively. The ax-
ial gauge field A5µ, examined in a different context in
Ref. 8, plays an important role in the discussion of the
asymptotic steady state of the driven system. The spa-
tial components A5 i correspond physically to acoustic
phonons and strain in the graphene lattice. If the lattice
is strained uniaxially, the hopping amplitudes change,
and the Dirac points shift away from K±. In this case,
the A5 i acquire a non-zero average value. In addition,
acoustic phonons, either in-plane or out-of-plane, dynam-
ically stretch the bonds, leading to fluctuations of A5 i

around the average. These acoustic phonons provide a
thermal bath and their coupling to the electronic degrees
of freedom provides a system-bath interaction, which en-
ables the system to reach an out-of-equilibrium steady
state.

We now observe that the time-dependent mass term
in the Lagrangian (8) can be made constant by the axial
(valley) gauge transformation

Ψ̃ = e−iγ5
Ω
2 τ Ψ , Ã5 0 = A5 0 +

Ω

2
, Ã5 i = A5 i , (9)

where i = 1, 2. The transformed Lagrangian is found to
be

L̃ = ¯̃Ψ
[
γµ(i∂µ + γ5Ã5µ)− |∆| e−iγ5ϕ

]
Ψ̃ , (10)

where we used {γ5, γ
µ} = 0. This transformation maps

the problem to a frame of reference which is “co-moving”
with the Kekulé mass, so that the Lagrangian is no longer
explicitly dependent on time.

The vector current operator jµ = Ψ̄γµΨ, which is as-
sociated with the electric response of the system, and
the axial current operator jµ5 = Ψ̄γµγ5Ψ are invariant
under (9). Furthermore, the spatial components A5 i of
the axial gauge field are also invariant under (9). Since
we have taken the fluctuations in A5 i to act as a heat
bath, we conclude that this transformation leaves the
bath invariant. Moreover, it also leaves the system-bath
coupling A5 i j

i
5 invariant. Therefore the transformation

(9) removes all time-dependences—those of the system,
the bath, and the system-bath interactions. The remark-
able consequence is that the non-equilibrium steady state
of the time-dependent system corresponds to a thermal
equilibrium state in the co-moving frame!
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Consequently, the HamiltonianH corresponding to the
transformed Lagrangian (10) can be analyzed in the time-
independent Schrödinger picture at thermal equilibrium.
H takes a particularly simple form in the absence of
strain, in which case A5µ = 0, i.e. Ã5 0 = Ω/2 and

Ã5 i = 0:

H =

(
σ · p− Ω

2 1 |∆| eiϕ 1
|∆| e−iϕ 1 −σ · p+ Ω

2 1

)
, (11)

where σ is the 2D vector of Pauli matrices and p = −i∇.
The eigenvalue problem Hψ = Eψ has been solved in [9]
in the context of the superconducting proximity effect in
topological insulators [10]; the four energy eigenvalues of
the Hamiltonian (11) are given by

E±,∓ = ±
√

(p∓ Ω/2)2 + |∆|2 . (12)

Evidently the gauge transformation (9) maps the time-
dependent problem of Eq. (8) to a time-independent
problem with an energy gap 2 |∆|.

It is important to observe that, because the vector
current operator jµ is invariant under (9), all observ-
ables associated with jµ can be calculated from the static
Lagrangian (10) without dealing with the original time-
dependent mass. In particular, the conductivity tensor
σij obtained from the Kubo formula written in terms
of the current operator jµ can be computed from (10).
Consequently, the driven graphene system effectively be-
haves as a semiconductor with a gap 2 |∆| tunable by the
amplitude of the optical phonon mode.

We shall next demonstrate that the rotating Kekulé
mass in the Lagrangian (8) gives rise to topological phe-
nomena beyond those that have been found in the static
case. To do this, we follow [11] in studying a variant of
(8):

L = Ψ̄
[
γµ(i∂µ + γ5A5µ)− |∆| e−iγ5φ − γ3µ

]
Ψ , (13)

where the scalar field µ = µ(x) corresponds to a stag-
gered chemical potential that establishes an energy im-
balance between the sites of ΛA and ΛB . The Kekulé
field ∆ = |∆(x)| eiφ(x,τ), where φ(x, τ) = Ωτ + ϕ(x),
now carries an explicit spatial dependence. The fields
µ and ∆ correspond to independent masses in the La-
grangian (13), i.e. the total effective mass of the charge
carriers is

√
µ2 + |∆|2. The vector current density in the

presence of (space- and time-dependent) masses µ and ∆
is given by [11]

〈jµ〉 = e
i

2π
εµαβ

{
∂αχ

∗∂βχ − i ∂α
[
(1− 2|χ|2)A5 β

]}
,

(14)

where e is the electron charge, εµαβ is the Levi-Civita
symbol, and the complex-valued auxiliary field χ ≡
sin(θ/2) eiφ, where

cos θ =
µ√

µ2 + |∆|2
, sin θ eiφ =

∆√
µ2 + |∆|2

, (15)

with 0 ≤ θ < π and 0 ≤ φ < 2π. Equations (14) and (15)
form the basis of our discussion of the topological cur-
rents resulting from the time-dependence of the Kekulé
mass term in (13). We use µ to define an edge, setting
µ→ 0 in the bulk and using the limit |µ| → ∞ to define
an insulating region outside the sample [16].

The current density in (14) is gauge-invariant, so one
can compute it in the reference frame where φ has a time
dependence or in the co-moving frame where φ (and χ)
are time-independent. It follows that the averaged charge
and current densities are

〈 ρ 〉 = e
i

2π
ε0ij ∂iχ

∗∂jχ = 〈 ρ 〉static (16a)

〈 j 〉 = e
Ω

2π
ẑ ×∇|χ(x)|2 , (16b)

where ẑ is the unit vector perpendicular to the plane of
the sample.

Several observations are in order. First, the charge
density in the case of the time-dependent Kekulé mass is
identical to that in the static case. Second, the current
density is non-vanishing and proportional to the rotation
frequency Ω. Notice that the rotating mass breaks time-
reversal symmetry, and therefore it is possible to have a
non-vanishing current. Third, if |∆| does not vary spa-
tially, the current vanishes; this is the case in the bulk of
a uniform graphene sample, where we take |∆| to be con-
stant. Fourth, there are necessarily edge currents, which
we shall now discuss in detail.

It follows from (16b) that the currents flow perpen-
dicular to the gradient of |∆|. At the boundary of the
sample |∆| must go from constant to zero. Therefore an
edge current should flow parallel to the boundary, within
the region where |∆| varies in space, (see Fig. 1). The
edge current is given by

Jedge =

∫ out

in

(ẑ × d`) · 〈 j 〉

= e
Ω

2π

(
|χout|2 − |χin|2

)
, (17)

where ` is a path that traverses the boundary. In the
interior of the sample |∆| is non-vanishing, so we can set
µ → 0, and using Eq. (15) we obtain that |χin|2 → 1/2.
Outside the sample, |∆| → 0 and |µ| → ∞. Depending
on whether µ > 0 or µ < 0 we obtain |χout|2 → 0 or 1,
respectively. Therefore, we arrive at the edge current

Jedge = −e
2

Ω

2π
sgnµ . (18)

The linear relation between Jedge and Ω has a quantized
coefficient. Note that because Ω = 2π/T , where T is
the rotation period, the current Jedge carries a fractional
charge±e/2 per rotation cycle [17]. This chiral current at
the boundary of the steady state bulk insulator is a topo-
logical property of the out-of-equilibrium system; the cur-
rents are quantized and protected against details at the
edge, including disorder.
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|∆in| �= 0

|∆out| = 0

�

Jedge =
e

2

Ω

2π
sgnµ

FIG. 1: Chiral edge current resulting from the out-of-
equilibrium steady-state arising from the excitation of optical
phonons at wavevector K+. The direction of the current is
inverted for K− phonons, for which Ω→ −Ω.

The chirality of the edge currents depends on whether
the K+ or K− phonon mode is excited. However, the
chirality of the current also depends on sgnµ. We now
offer a physical explanation of this fact. The mass µ was
included in the Lagrangian (13) as a means of terminat-
ing the sample with an insulating region. In a physical
graphene flake, our findings therefore indicate that the
sign of the edge current is determined by the specific
shape of the sample. Notice that the direction of the
current obtained from the field theory cannot change un-
less µ changes sign outside the sample. But if this is the
case, there will be domain walls separating these regions
that support gapless modes. Indeed, these walls serve as
quantum wires [12] attached to the sample, as shown in
Fig. 2. The direction of the edge currents reverses at the
contacts, as shown in the figure. Current conservation
requires that currents of magnitude Jwire = eΩ/2π flow
in the wires, splitting equally at the contacts and travel-
ing around the edges of the sample. The graphene flake
in this scenario becomes a pump [13] that transports a
charge e per rotation period T .

The next observation concerns zero modes in graphene,
which are supported in the presence of vortices in the or-
der parameter ∆ [4]. An external chiral gauge potential
A5 was added to render finite the vortex energies, thereby
deconfining them [8]. Such a vortex background can also
exist in our time-dependent scenario. In the co-moving
frame this involves adding A5,0 = Ω/2 to the static prob-
lem. We find that zero-energy modes persist both with
and without A5, consistent with the findings of [14, 15].

Our final observation concerns the size of the gap
that can be achieved by excitation of the optical phonon
modes at K±. From Eq. (7) we obtain that |∆| =
3α t|c±|/d, where |c±|/d measures the relative displace-
ment of the atoms from their equilibrium positions due
to the phonons and is controlled by the intensity of the
excitations. Using α ≈ 3.7 and t ≈ 2.8 eV for graphene,
one obtains for a relative displacement |c±|/d ≈ 0.04%
that 2 |∆| ≈ 0.025 eV, corresponding to room tempera-
ture scales.

|∆in| �= 0

|∆out| = 0

µ > 0
µ < 0

Jedge =
e

2

Ω

2π

Jedge =
e

2

Ω

2π

Jwire = e
Ω

2π

µ < 0

µ > 0

Jwire = e
Ω

2π

FIG. 2: Currents in the presence of domain walls between re-
gions with µ > 0 and µ < 0. The edge currents have opposite
chiralities to either side of the wires. The current pumped
per cycle is an integer multiple of e, while a fraction e/2 goes
around each side during the cycle.

In summary, we have illustrated a mechanism for open-
ing a tunable Kekulé gap in graphene by exciting an
optical phonon mode at K+ or K−. This gap corre-
sponds to a complex-valued order parameter ∆ in the
continuum theory that rotates in time with frequency
Ω. The time dependence of ∆ is completely removable
by a gauge transformation which has no effect on bath
degrees of freedom and leaves the current operators un-
affected. The electric response of the system is therefore
equivalent to that of one with a static gap. Furthermore,
the system is found to support chiral quantized currents
that are localized in regions where |∆| varies spatially.
In particular, there are edge currents whose chirality de-
pends on the shape of the sample and on which of the
K± phonon modes is excited.
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