
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Nonlinear Elastic Instability in Channel Flows at Low
Reynolds Numbers

L. Pan, A. Morozov, C. Wagner, and P. E. Arratia
Phys. Rev. Lett. 110, 174502 — Published 23 April 2013

DOI: 10.1103/PhysRevLett.110.174502

http://dx.doi.org/10.1103/PhysRevLett.110.174502


LR13452

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

A nonlinear elastic instability in channel flows at low Reynolds numbers

L. Pan1, A. Morozov2, C. Wagner3, and P. E. Arratia1
1Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, USA

2SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK and
3Experimental Physics, Saarland University, Saarbrucken, DE

(Dated: February 12, 2013)

It is presently believed that flows of viscoelastic polymer solutions in geometries such as a straight
pipe or channel are linearly stable. Here we present experimental evidence that such flows can
be nonlinearly unstable and can exhibit a subcritical bifurcation. Velocimetry measurements are
performed in a long, straight micro-channel; flow disturbances are introduced at the entrance of
the channel system by placing a variable number of obstacles. Above a critical flow rate and a
critical size of the perturbation, a sudden onset of large velocity fluctuations indicates presence
of a nonlinear subcritical instability. Together with the previous observations of hydrodynamic
instabilities in curved geometries, our results suggest that any flow of polymer solutions becomes
unstable at sufficiently high flow rates.

PACS numbers: 47.50.-d, 47.20.Gv, 61.25.he

Solutions containing polymer molecules do not flow like
water. Even when flowing slowly, these fluids can exhibit
hydrodynamic instabilities [1–8] and a new type of tur-
bulence - the so-called purely elastic turbulence [9, 10]
even at low Reynolds numbers (Re). These phenomena,
driven by the anisotropic elasticity of the fluid, were ex-
perimentally observed only in geometries with sufficient
curvature, like rotational flows between two cylinders
[1, 11, 12] and plates [13], in curved channels [10, 14],
and around obstacles [15]. Most of the nonlinear flow
behavior observed in these studies arises from the extra
elastic stresses due to the presence of polymer molecules
in the fluid. These elastic stresses are history dependent
and evolve on the time-scale λ that in dilute solutions is
proportional to the time needed for a polymer molecule
to relax to its equilibrium state [16].
A common feature of the above-mentioned geometries

is the presence of curved streamlines in the base flow
with a sufficient velocity gradient across the streamlines.
It has been argued that this is a necessary condition for
infinitesimal perturbations to be amplified by the normal
stress imbalances in viscoelastic flows [1, 8, 13]. This con-
dition can be written as (λUN1)/(RΣ) ≥ M [8, 13, 17],
where M is a constant that only depends on the type of
flow geometry, U is a typical velocity along the stream-
lines, R is the radius of streamline curvature, and N1

and Σ are the first normal stress difference and the
shear stress, correspondingly. According to this condi-
tion, purely elastic linear instabilities are not possible
when the curvature of the flow geometry is zero, and in-
finitesimal perturbations decay at a rate proportional to
1/λ [8, 18, 19].
Nevertheless, the absence of a linear instability does

not imply absolute stability. Indeed, recent theoretical
[17, 20–23] and indirect experimental [24, 25] evidence
points towards a finite-amplitude transition in viscoelas-
tic flows with parallel streamlines even at low Reynolds
number, where viscous and elastic forces dominate over

FIG. 1. Color Online. (a) Sketch of the experimental setup.
The dash line window represents a typical sampling position.
(b, c) Sample snapshots of dye advection experiments at Re <
0.01 and 15 cylinders: (b) Newtonian case; (c) polymeric case,
Wi=10.9. Field of view is 9W .

inertial forces. An earlier study of the flow of a polymeric
melt extruded out of a thin cylindrical capillary [24] re-
ported that outside the capillary the extrudate developed
periodic surface modulations above a critical flow rate.
While this behavior was shown to be hysteretic, and thus
consistent with a nonlinear instability scenario, it was un-
clear whether the instability originated inside or outside
of the capillary. In a recent investigation of a dilute poly-
mer solution flowing in a straight pipe [25], the authors
observed unusually large velocity fluctuations inside the
pipe, but the subcritical nature of the instability was
not established and no hysteric behavior was reported.
Here, we present the first direct experimental evidence
of a nonlinear subcritical instability in a wall-bounded
straight channel flow for a single-phase viscoelastic fluid.

Experiments are performed in a long (∼ 3.3 cm),
straight microchannel system that consists of a short ini-
tial perturbation region (∼ 0.2 cm) followed by a long
parallel flow region (∼ 3.1 cm) as shown in Fig. 1a. The
microchannel system is 90 µm deep and 100 µm wide.
The initial perturbation region is located at the very be-
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ginning of the channel and contains an array of variable
number of cylinders. This short array is only responsible
for introducing flow perturbations into the long parallel
flow region. Cylinders in the array are 50 µm in diam-
eter and 90 µm tall; the distance between two adjacent
cylinders is 200 µm (center to center). The number of
cylinders n in the initial perturbation region varies from
1 to 15 in order to alter the strength of the perturbation;
a channel devoid of cylinders n=0 is also used for control.
We note that the parallel flow region is long (∼ 3.1 cm),
straight, and devoid of cylinders; the fate of the initial
flow perturbations introduced by the cylinders is moni-
tored in this long parallel shear flow region using dye ad-
vection and velocimetry methods. All microchannels are
fabricated using standard soft-lithography methods [26].

Both Newtonian and polymeric fluids are investigated.
The Newtonian fluid is a 90% by weight glycerol aqueous
solution with shear viscosity η ≈ 0.2 Pa·s. The polymeric
solution is made by adding 300 ppm of polyacrylamide
(PAA, 18 x 106 MW) to a viscous Newtonian solvent
(90% by weight glycerol aqueous solution). Both flu-
ids are characterized using a strain-controlled rheome-
ter at 23 ◦C [27]. For all experiments, the Reynolds
number (Re) is small (<0.01) due to the channel small
length scale and high fluid viscosity. Here Re=ρUL/η ,
where U is the fluid velocity, L is a characteristic length
scale, and ρ is the fluid density. The magnitude of the
elastic stresses compared to viscous stresses is charac-
terized by the Weissenberg number [28, 29] defined as
Wi=N1/(2γ̇η), where N1 is the first normal stress differ-
ence and γ̇ is the shear-rate; further details in [27].

We begin with dye advection experiments which are
performed by injecting small amounts of dyed fluid (fluo-
rescein) into the flow from the top wall using a multilayer
injection scheme. Dyed fluid is injected at approximately
1.0 cm downstream from the initial perturbation region
in order to display only the flow patterns in the parallel
flow region. Images are taken about 1 mm downstream
from injection point. Figures 1(b) and (c) show snap-
shots of the dye advection experiments at Re< 10−2 for
both the Newtonian and polymeric cases, respectively for
a channel containing 15 cylinders (n = 15). The New-
tonian case (Fig. 1b) shows a stable layer of dyed fluid
that does not mix with the undyed fluid except by dif-
fusion. An entirely different pattern is observed when
the Newtonian fluid is replaced by a polymeric solution
at Wi = 10.9 (Fig. 1c). The dyed fluid quickly mixes
with the undyed fluid, which suggests the presence of hy-
drodynamic instabilities and time-dependent flow. Be-
low we show that this time-dependent flow is not due to
the downstream advection of the fluctuations around the
cylinders, but rather is a unique non-linear state inde-
pendent of the original perturbation.

Particle velocimetry methods are used to quantify the
instability observed in the dye experiments. The flow is
seeded with small fluorescent particles (0.86 µm in diam-

FIG. 2. Color Online. (a,b): Spatially averaged velocity mag-
nitude as a function of time for (a) n=15 as a function of Wi

and for (b) Wi=10.9 as a function of n. (c,d): Instantaneous
and mean streamwise velocity profiles for n=15 for (c) Wi =
5.4 and (d) Wi = 10.9. (e,f): Power spectra of the velocity
fluctuations from (a) and (b).

eter) that are tracked using a CMOS (3 kHz) and an epi-
fluorescent microscope. The particle tracks are measured
at a mid-point between the top and bottom plates of the
channel in order to minimize the effects of out-of-plane
velocity gradients; the thickness of the measuring plane
is approximately 2 µm. Measurements are performed in
several locations along the channel including one chan-
nel width (1W) after the last cylinder as well as 50W,
100W, 150W, and 200W. The 1W measuring location is
used to monitor the amplitude of the initial disturbance
introduced in the flow by the array of n cylinders. The
other measuring locations are used to monitor the fate of
the initial disturbance in the parallel flow region.

To quantify the time dependence of the flow, we sam-
ple a square area (about 35% of the channel width cen-
tered at midpoint) of the velocity fields in the parallel
shear flow region, and measure the average streamwise
speed as a function of time. The sampling rates are long
enough (∼ 1 ms) to ensure the accuracy of the velocime-
try measurement but are much shorter than the typical
time scale of the fluid motion. All measurements shown
in Fig. 2 are taken at 200W or 2 cm downstream from the
last cylinder. Figure 2(a) shows samples of the velocity
magnitude records measured far downstream (200W) for
a channel with n=15 as function of Wi or equivalently
flow rate. We find that, for the polymeric case, the veloc-
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FIG. 3. Color Online. Velocity fluctuations σ/<V> along
the parallel flow region as a function of channel position and
Wi.

ity fluctuations become larger as Wi is increased. The
Newtonian case, on the other hand, produces no such
fluctuations at comparable shear-rates (210 s−1). In Fig.
2(b), we show velocity records of the polymeric solution
at a fixed Wi=10.9 for channel systems with different
number of cylinders n. For the case of an empty channel
(n=0), the viscoelastic case shows no significant fluctu-
ations even at the highest shear-rate. Time-dependent
velocity fluctuations, however, become apparent as cylin-
ders are introduced in the channel. This is further il-
lustrated by plotting the instantaneous and mean ve-
locity profiles of the polymeric fluid. For Wi=5.4 (Fig.
2c), there is no time-dependence and the (base) flow is
unidirectional. For Wi=10.9 (Fig. 2d), on the other
hand, the instantaneous velocity profiles show significant
differences between each other and with the mean pro-
file. Importantly, the amplitude of velocity fluctuations
is roughly independent of n at a fixed Wi (Fig. 2b).
The corresponding power spectra of the velocity sig-

nals in Fig. 2(a) and (b) are shown in Fig. 2(e) and (f),
respectively. Since the entire velocity field must be mea-
sured at each instant, the records are only a few hundred
points long, but this is sufficient to establish the quali-
tative features of the spectra. In Fig. 2(e), we note that
the spectral power at low frequencies grows by 2-4 orders
of magnitude as the Wi is increased at a fixed n. Simi-
lar behavior is observed as n is increased at a fixed Wi.
The velocity fluctuations are non-periodic, with a possi-
ble power-law decay, indicating that the flow is excited
at many time-scales. Such decay has been observed in
many flow geometries with curved streamlines and has
been interpreted as evidence of elastic turbulence [9, 10].
By contrast, the Newtonian and n=0 (polymeric) cases
show a relatively flat power spectra consistent with noise.
Next, we investigate how the amplitude of the velocity

fluctuations changes along the channel. In Fig. 3, we plot
the standard deviation σ of the velocity signal normal-
ized by its mean <V> measured at different locations
in the parallel shear region as function of Wi for n=15.
As expected, the velocity fluctuations for the Newtonian
case are small (∼ 0.01) and independent of the channel
position even at high shear-rates. Results for the poly-
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FIG. 4. Color Online. Velocity fluctuations σ/ <V> at 200W
downstream from the last cylinder: (a) as a function of Wi

and n; (b) as a function of Wi for n=15 as the shear-rate is
increased (dark curve) and decreased (red curve). Lines are
added to guide the eye. (Inset) Bifurcation diagram for the
instability around the cylinders.

meric solution show a different behavior. For Wi up to
5.4, the values of σ/<V> are relatively large immedi-
ately after the last cylinder (1W ) due to a well-known
instability that develops in the wake of a cylinder for vis-
coelastic flows [7, 30]. In our experiments this instability
sets in at Wi≈3.5. However, the velocity fluctuations de-
cay to values close to the Newtonian case in just a few
channel widths. This indicates that any flow disturbance
that initially develops in the channel is short-lived and
damped by viscous forces, and the flow far downstream
is stable for Wi < 5.4.

An entirely different behavior emerges for Wi > 5.4
and n=15. The velocity fluctuations, created in the wake
of the array of cylinders, settle to values of σ/<V> that
are significantly larger than the Newtonian case (Fig.
3). These velocity fluctuations decay to only 8-10% af-
ter 50W, and remain approximately constant thereafter
even at 200W. Similar behavior in σ/<V> is observed
down to Wi > 8.1. This data strongly suggests that a
time-dependent flow can be created and sustained in the
parallel shear flow region provided the Weissenberg num-
ber and the strength of the initial perturbation supplied
by the flow around cylinders are both sufficiently large.

We now study how large a perturbation (created by
the cylinders) should be to destabilize the flow in the
parallel shear region. In Fig. 4(a), the magnitude of
the velocity fluctuations far downstream from the last
cylinder are plotted as a function ofWi for channels with
different number of cylinders n. For n=0, no instability is
found anywhere in the channel, and the values of σ/<V>
remain near 1%. For n=1, a relatively small levels of
fluctuations are observed (∼ 2.5%) even for large Wi ;
these fluctuations could be due to flow convection.

A notable difference in flow behavior is observed when
the number of obstacles is further increased. For n=2 and
Wi < 5.4, the values of σ/<V> are still relatively small
(∼ 2%). However, for Wi > 5.4, the velocity fluctuations
sharply increase and reach an asymptotic value of about
9% for large Wi. Similar behavior to the n=2 case is ob-
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served for the n=5 and n=15 cases in polymer solutions.
The data in Fig 4(a) clearly shows the development of
two branches after a critical value of Wi, one in which
the flow is stable (n < 2) and the other in which the flow
is unstable (n≥2). Importantly, for n ≥2 the level of fluc-
tuations saturates and does not depend on n suggesting
that the flow has reached the same nonlinear state in-
dependent of the initial perturbation. A phase diagram
showing this nonlinear instability is available in [27].

The dynamic behavior of the flow transitions are also
investigated (Fig. 4b). For the linear array of cylinders
(Fig. 4b, inset), where measurements are performed im-
mediately after the last cylinder or at 1W, the transition
from steady to unsteady flow is characterized by a for-
ward bifurcation and no hysteric behavior [7]. On the
other hand, the transition from steady to unsteady flow
in the parallel shear region (or 200W) exhibits a dynami-
cal hysteresis (Fig. 4b): upon the increase or decrease of
the flow rate, the level of fluctuations sharply rises and
falls at different Wi ’s. This hysteric behavior is a hall-
mark of a subcritical bifurcation. This ultimately proves
that, while the cylinders or obstacles play an important
role in providing strong initial perturbations to the flow,
the resulting bulk instability in the parallel shear flow
section of the channel is clearly distinct from the insta-
bility around the cylinders.

Finally, we comment on the relation between the
observed transition and the non-normal growth the-
ory developed for Newtonian [33, 34] and viscoelastic
[22, 23, 35] shear flows. This theory considers linear

dynamics of perturbations and predicts that in a lin-
early stable system a perturbation which is not a pure
eigenmode of the non-normal linear operator will grow
algebraically in time before decaying exponentially. Our
observations are, however, incompatible with this predic-
tion. Indeed, such time-evolution in a frame co-moving
with the mean flow translates into an initial spatial re-
gion of increasing fluctuations followed by a region where
fluctuations decay, when viewed in the lab frame. In-
stead, above the transition we observe fluctuation levels
that are essentially independent of the spatial position
downstream of the channel (Fig. 3). Moreover, the non-
normal growth theory predicts that any non-modal per-
turbation would be amplified. But no significant fluctu-
ations far downstream of the channel are found in the
presence of one cylinder even after the linear instability
around the cylinder sets in (Fig. 4a). This suggests that
there is a finite-amplitude threshold for the transition
and that the transition is non-linear. Finally, the subcrit-
ical nature of the transition, demonstrated in Fig.4 (b),
rules out any explanation based on a linear theory. While
it is likely that the non-normal growth is a part of the
transition we observed, the transition itself is a nonlinear
phenomenon, similar to the Newtonian case [36, 37].

In summary, we have shown experimentally the exis-
tence of a nonlinear subcritical instability for polymeric

fluids in a parallel shear flow at low Re. The critical
value of Wi for the onset of the subcritical instability in
the parallel flow is larger than 5.2 for the type of dis-
turbances introduced here. This critical value may, how-
ever, be very sensitive to the type and strength of the
initial perturbation and will be further investigated. A
possible mechanism leading to this subcritical instability
has been proposed [21] in which the initial finite ampli-
tude disturbance produces a new effective base flow with
curved streamlines in the parallel flow region and be-
comes linearly unstable [5, 8]. The transition then would
depend on whether the disturbance is sufficiently strong
and long-lived to become unstable. This scenario is akin
to the transition to turbulence of Newtonian fluids in pipe
and channel flows, except that the instability is caused
by the nonlinear elastic stresses and not inertia [31, 32].
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